@article{KraemerBijnensStoerketal.2015, author = {Kr{\"a}mer, Johannes and Bijnens, Bart and St{\"o}rk, Stefan and Ritter, Christian O. and Liu, Dan and Ertl, Georg and Wanner, Christoph and Weidemann, Frank}, title = {Left ventricular geometry and blood pressure as predictors of adverse progression of Fabry cardiomyopathy}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0140627}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145131}, pages = {e0140627}, year = {2015}, abstract = {Background In spite of several research studies help to describe the heart in Fabry disease (FD), the cardiomyopathy is not entirely understood. In addition, the impact of blood pressure and alterations in geometry have not been systematically evaluated. Methods In 74 FD patients (mean age 36±12 years; 45 females) the extent of myocardial fibrosis and its progression were quantified using cardiac magnetic-resonance-imaging with late enhancement technique (LE). Results were compared to standard echocardiography complemented by 2D-speckle-tracking, 3D-sphericity-index (SI) and standardized blood pressure measurement. At baseline, no patient received enzyme replacement therapy (ERT). After 51±24 months, a follow-up examination was performed. Results Systolic blood pressure (SBP) was higher in patients with vs. without LE: 123±17 mmHg vs. 115±13 mmHg; P = 0.04. A positive correlation was found between SI and the amount of LE-positive myocardium (r = 0.51; P<0.001) indicating an association of higher SI in more advanced stages of the cardiomyopathy. SI at baseline was positively associated with the increase of LE-positive myocardium during follow-up. The highest SBP (125±19 mmHg) and also the highest SI (0.32±0.05) was found in the subgroup with a rapidly increasing LE (ie, ≥0.2\% per year; n = 16; P = 0.04). Multivariate logistic regression analysis including SI, SBP, EF, left ventricular volumes, wall thickness and NT-proBNP adjusted for age and sex showed SI as the most powerful parameter to detect rapid progression of LE (AUC = 0.785; P<0.05). Conclusions LV geometry as assessed by the sphericity index is altered in relation to the stage of the Fabry cardiomyopathy. Although patients with FD are not hypertensive, the SBP has a clear impact on the progression of the cardiomyopathy.}, language = {en} } @article{MurakawaHinzMothesetal.2015, author = {Murakawa, Yasuhiro and Hinz, Michael and Mothes, Janina and Schuetz, Anja and Uhl, Michael and Wyler, Emanuel and Yasuda, Tomoharu and Mastrobuoni, Guido and Friedel, Caroline C. and D{\"o}lken, Lars and Kempa, Stefan and Schmidt-Supprian, Marc and Bl{\"u}thgen, Nils and Backofen, Rolf and Heinemann, Udo and Wolf, Jana and Scheidereit, Claus and Landthaler, Markus}, title = {RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-\(\kappa\)B pathway}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7367}, doi = {10.1038/ncomms8367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151596}, year = {2015}, abstract = {The RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNF\(\alpha\) mRNA decay via a 3'UTR constitutive decay element (CDE). Here we applied PAR-CLIP to human RC3H1 to identify ~3,800 mRNA targets with >16,000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage-induced mRNAs, indicating a role of this RNA-binding protein in the post-transcriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of the NF-\(\kappa\)B pathway regulators such as I\(\kappa\)B\(\alpha\) and A20. RC3H1 uses ROQ and Zn-finger domains to contact a binding site in the A20 3'UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with I\(\kappa\)B kinase and NF-\(\kappa\)B activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-\(\kappa\)B pathway.}, language = {en} } @article{OkoroBarquistConnoretal.2015, author = {Okoro, Chinyere K. and Barquist, Lars and Connor, Thomas R. and Harris, Simon R. and Clare, Simon and Stevens, Mark P. and Arends, Mark J. and Hale, Christine and Kane, Leanne and Pickard, Derek J. and Hill, Jennifer and Harcourt, Katherine and Parkhill, Julian and Dougan, Gordon and Kingsley, Robert A.}, title = {Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {3}, doi = {10.1371/journal.pntd.0003611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143779}, pages = {e0003611}, year = {2015}, abstract = {Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population.}, language = {en} } @article{SassVanAckerFoerstneretal.2015, author = {Sass, Andrea M. and Van Acker, Heleen and F{\"o}rstner, Konrad U. and Van Nieuwerburgh, Filip and Deforce, Dieter and Vogel, J{\"o}rg and Coenye, Tom}, title = {Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {775}, doi = {10.1186/s12864-015-1993-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139748}, year = {2015}, abstract = {Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.}, language = {en} } @article{StepniakKaestnerPoggietal.2015, author = {Stepniak, Beata and K{\"a}stner, Anne and Poggi, Giulia and Mitjans, Marina and Begemann, Martin and Hartmann, Annette and Van der Auwera, Sandra and Sananbenesi, Farahnaz and Kr{\"u}ger-Burg, Dilja and Matuszko, Gabriela and Brosi, Cornelia and Homuth, Georg and V{\"o}lzke, Henry and Benseler, Fritz and Bagni, Claudia and Fischer, Utz and Dityatev, Alexander and Grabe, Hans-J{\"o}rgen and Rujescu, Dan and Fischer, Andre and Ehrenreich, Hannelore}, title = {Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {12}, doi = {10.15252/emmm.201505696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136893}, pages = {1565-1579}, year = {2015}, abstract = {Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60\% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high-versus low-risk constellation regarding the accumulation model. Thereby, the brain-expressed miR-181 species emerged as potential "umbrella regulator", with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.}, language = {en} }