@phdthesis{Schilcher2023, author = {Schilcher, Felix}, title = {Regulation of the nurse-forager transition in honeybees (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-28935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Honeybees are among the few animals that rely on eusociality to survive. While the task of queen and drones is only reproduction, all other tasks are accomplished by sterile female worker bees. Different tasks are mostly divided by worker bees of different ages (temporal polyethism). Young honeybees perform tasks inside the hive like cleaning and nursing. Older honeybees work at the periphery of the nest and fulfill tasks like guarding the hive entrance. The oldest honeybees eventually leave the hive to forage for resources until they die. However, uncontrollable circumstances might force the colony to adapt or perish. For example, the introduced Varroa destructor mite or the deformed wing virus might erase a lot of in-hive bees. On the other hand, environmental events might kill a lot of foragers, leaving the colony with no new food intake. Therefore, adaptability of task allocation must be a priority for a honeybee colony. In my dissertation, I employed a wide range of behavioral, molecular biological and analytical techniques to unravel the underlying molecular and physiological mechanisms of the honeybee division of labor, especially in conjunction with honeybee malnourishment. The genes AmOARα1, AmTAR1, Amfor and vitellogenin have long been implied to be important for the transition from in-hive tasks to foraging. I have studied in detail expression of all of these genes during the transition from nursing to foraging to understand how their expression patterns change during this important phase of life. My focus lay on gene expression in the honeybee brain and fat body. I found an increase in the AmOARα1 and the Amforα mRNA expression with the transition from in-hive tasks to foraging and a decrease in expression of the other genes in both tissues. Interestingly, I found the opposite pattern of the AmOARα1 and AmTAR1 mRNA expression in the honeybee fat body during orientation flights. Furthermore, I closely observed juvenile hormone titers and triglyceride levels during this crucial time. Juvenile hormone titers increased with the transition from in-hive tasks to foraging and triglyceride levels decreased. Furthermore, in-hive bees and foragers also differ on a behavioral and physiological level. For example, foragers are more responsive towards light and sucrose. I proposed that modulation via biogenic amines, especially via octopamine and tyramine, can increase or decrease the responsiveness of honeybees. For that purpose, in-hive bees and foragers were injected with both biogenic amines and the receptor response was quantified 1 using electroretinography. In addition, I studied the behavioral response of the bees to light using a phototaxis assay. Injecting octopamine increased the receptor response and tyramine decreased it. Also, both groups of honeybees showed an increased phototactic response when injected with octopamine and a decreased response when injected with tyramine, independent of locomotion. Additionally, nutrition has long been implied to be a driver for division of labor. Undernourished honeybees are known to speed up their transition to foragers, possibly to cope with the missing resources. Furthermore, larval undernourishment has also been implied to speed up the transition from in-hive bees to foragers, due to increasing levels of juvenile hormone titers in adult honeybees after larval starvation. Therefore, I reared honeybees in-vitro to compare the hatched adult bees of starved and overfed larvae to bees reared under the standard in-vitro rearing diet. However, first I had to investigate whether the in-vitro rearing method affects adult honeybees. I showed effects of in-vitro rearing on behavior, with in-vitro reared honeybees foraging earlier and for a shorter time than hive reared honeybees. Yet, nursing behavior was unaffected. Afterwards, I investigated the effects of different larval diets on adult honeybee workers. I found no effects of malnourishment on behavioral or physiological factors besides a difference in weight. Honeybee weight increased with increasing amounts of larval food, but the effect seemed to vanish after a week. These results show the complexity and adaptability of the honeybee division of labor. They show the importance of the biogenic amines octopamine and tyramine and of the corresponding receptors AmOARα1 and AmTAR1 in modulating the transition from inhive bees to foragers. Furthermore, they show that in-vitro rearing has no effects on nursing behavior, but that it speeds up the transition from nursing to foraging, showing strong similarities to effects of larval pollen undernourishment. However, larval malnourishment showed almost no effects on honeybee task allocation or physiology. It seems that larval malnourishment can be easily compensated during the early lifetime of adult honeybees.}, subject = {Biene}, language = {en} } @phdthesis{Schmalz2023, author = {Schmalz, Fabian Dominik}, title = {Processing of behaviorally relevant stimuli at different levels in the bee brain}, doi = {10.25972/OPUS-28882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.}, subject = {Biene}, language = {en} } @phdthesis{DeğirmencineePoelloth2023, author = {Değirmenci [n{\´e}e P{\"o}lloth], Laura}, title = {Sugar perception and sugar receptor function in the honeybee (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-32187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321873}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In the eusocial insect honeybee (Apis mellifera), many sterile worker bees live together with a reproductive queen in a colony. All tasks of the colony are performed by the workers, undergoing age-dependent division of labor. Beginning as hive bees, they take on tasks inside the hive such as cleaning or the producing of larval food, later developing into foragers. With that, the perception of sweetness plays a crucial role for all honeybees whether they are sitting on the honey stores in the hive or foraging for food. Their ability to sense sweetness is undoubtedly necessary to develop and evaluate food sources. Many of the behavioral decisions in honeybees are based on sugar perception, either on an individual level for ingestion, or for social behavior such as the impulse to collect or process nectar. In this context, honeybees show a complex spectrum of abilities to perceive sweetness on many levels. They are able to perceive at least seven types of sugars and decide to collect them for the colony. Further, they seem to distinguish between these sugars or at least show clear preferences when collecting them. Additionally, the perception of sugar is not rigid in honeybees. For instance, their responsiveness towards sugar changes during the transition from in-hive bees (e.g. nurses) to foraging and is linked to the division of labor. Other direct or immediate factors changing responsiveness to sugars are stress, starvation or underlying factors, such as genotype. Interestingly, the complexity in their sugar perception is in stark contrast to the fact that honeybees seem to have only three predicted sugar receptors. In this work, we were able to characterize the three known sugar receptors (AmGr1, AmGr2 and AmGr3) of the honeybee fully and comprehensively in oocytes (Manuscript II, Chapter 3 and Manuscript III, Chapter 4). We could show that AmGr1 is a broad sugar receptor reacting to sucrose, glucose, maltose, melezitose and trehalose (which is the honeybees' main blood sugar), but not fructose. AmGr2 acts as its co-receptor altering AmGr1's specificity, AmGr3 is a specific fructose receptor and we proved the heterodimerization of all receptors. With my studies, I was able to reproduce and compare the ligand specificity of the sugar receptors in vivo by generating receptor mutants with CRISPR/Cas9. With this thesis, I was able to define AmGr1 and AmGr3 as the honeybees' basis receptors already capable to detect all sugars of its known taste spectrum. In the expression analysis of my doctoral thesis (Manuscript I, Chapter 2) I demonstrated that both basis receptors are expressed in the antennae and the brain of nurse bees and foragers. This thesis assumes that AmGr3 (like the Drosophila homologue) functions as a sensor for fructose, which might be the satiety signal, while AmGr1 can sense trehalose as the main blood sugar in the brain. Both receptors show a reduced expression in the brain of foragers when compared with nurse bees. These results may reflect the higher concentrated diet of nurse bees in the hive. The higher number of receptors in the brain may allow nurse bees to perceive hunger earlier and to consume the food their sitting on. Forager bees have to be more persistent to hunger, when they are foraging, and food is not so accessible. The findings of reduced expression of the fructose receptor AmGr3 in the antennae of nurse bees are congruent with my other result that nurse bees are also less responsive to fructose at the antennae when compared to foragers (Manuscript I, Chapter 2). This is possible, since nurse bees sit more likely on ripe honey which contains not only higher levels of sugars but also monosaccharides (such as fructose), while foragers have to evaluate less-concentrated nectar. My investigations of the expression of AmGr1 in the antennae of honeybees found no differences between nurse bees and foragers, although foragers are more responsive to the respective sugar sucrose (Manuscript I, Chapter 2). Considering my finding that AmGr2 is the co-receptor of AmGr1, it can be assumed that AmGr1 and the mediated sucrose taste might not be directly controlled by its expression, but indirectly by its co-receptor. My thesis therefore clearly shows that sugar perception is associated with division of labor in honeybees and appears to be directly or indirectly regulated via expression. The comparison with a characterization study using other bee breeds and thus an alternative protein sequence of AmGr1 shows that co-expression of different AmGr1 versions with AmGr2 alters the sugar response differently. Therefore, this thesis provides first important indications that alternative splicing could also represent an important regulatory mechanism for sugar perception in honeybees. Further, I found out that the bitter compound quinine lowers the reward quality in learning experiments for honeybees (Manuscript IV, Chapter 5). So far, no bitter receptor has been found in the genome of honeybees and this thesis strongly assumes that bitter substances such as quinine inhibit sugar receptors in honeybees. With this finding, my work includes other molecules as possible regulatory mechanism in the honeybee sugar perception as well. We showed that the inhibitory effect is lower for fructose compared to sucrose. Considering that sugar signals might be processed as differently attractive in honeybees, this thesis concludes that the sugar receptor inhibition via quinine in honeybees might depend on the receptor (or its co-receptor), is concentration-dependent and based on the salience or attractiveness and concentration of the sugar present. With my thesis, I was able to expand the knowledge on honeybee's sugar perception and formulate a complex, comprehensive overview. Thereby, I demonstrated the multidimensional mechanism that regulates the sugar receptors and thus the sugar perception of honeybees. With this work, I defined AmGr1 and AmGr3 as the basis of sugar perception and enlarged these components to the co-receptor AmGr2 and the possible splice variants of AmGr1. I further demonstrated how those sugar receptor components function, interact and that they are clearly involved in the division of labor in honeybees. In summary, my thesis describes the mechanisms that enable honeybees to perceive sugar in a complex way, even though they inhere a limited number of sugar receptors. My data strongly suggest that honeybees overall might not only differentiate sugars and their diet by their general sweetness (as expected with only one main sugar receptor). The found sugar receptor mechanisms and their interplay further suggest that honeybees might be able to discriminate directly between monosaccharides and disaccharides or sugar molecules and with that their diet (honey and nectar).}, subject = {Biene}, language = {en} } @phdthesis{KayaZeeb2023, author = {Kaya-Zeeb, Sinan David}, title = {Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis}, doi = {10.25972/OPUS-31408}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology.}, subject = {Octopamin}, language = {en} } @phdthesis{Rutschmann2023, author = {Rutschmann, Benjamin}, title = {Occurrence and population density of wild-living honey bees in Europe and the impact of different habitat types on their foraging and overwintering success}, doi = {10.25972/OPUS-28673}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The original habitat of native European honey bees (\(Apis\) \(mellifera\)) is forest, but currently there is a lack of data about the occurrence of wild honey bee populations in Europe. Prior to being kept by humans in hives, honey bees nested as wild species in hollow trees in temperate forests. However, in the 20th century, intensification of silviculture and agriculture with accompanying losses of nesting sites and depletion of food resources caused population declines in Europe. When the varroa mite (Varroa destructor), an invasive ectoparasite from Asia, was introduced in the late 1970s, wild honey bees were thought to be eradicated in Europe. Nevertheless, sporadic, mostly anecdotal, reports from ornithologists or forest ecologists indicated that honey bee colonies still occupy European forest areas. In my thesis I hypothesize that near-natural deciduous forests may provide sufficient large networks of nesting sites representing refugia for wild-living honey bees. Using two special search techniques, i.e. the tracking of flight routes of honey bee foragers (the "beelining" method) and the inspection of known cavity trees, I collected for the first time data on the occurrence and density of wild-living honey bees in forest areas in Germany (CHAPTER 3). I found wild-living honey bee colonies in the Hainich national park at low densities in two succeeding years. In another forest region, I checked known habitat trees containing black woodpecker cavities for occupation by wild-living honey bee colonies. It turned out that honey bees regularly use these cavities and occur in similar densities in both studied forest regions, independent of the applied detection method. Extrapolating these densities to all German forest areas, I estimate several thousand wild-living colonies in Germany that potentially interact in different ways with the forest environment. I conclude that honey bees regularly colonize forest areas in Germany and that networks of mapped woodpecker cavities offer unique possibilities to study the ecology of wild-living honey bees over several years. While their population status is ambiguous and the density of colonies low, the fact that honey bees can still be found in forests poses questions about food supply in forest environments. Consequently, I investigated the suitability of woodlands as a honey bee foraging habitat (CHAPTER 4). As their native habitat, forests are assumed to provide important pollen and nectar sources for honey bee colonies. However, resource supply might be spatially and temporally restricted and landscape-scale studies in European forest regions are lacking. Therefore, I set up twelve honey bee colonies in observation hives at locations with varying degree of forest cover. Capitalizing on the unique communication behaviour, the waggle dance, I examined the foraging distances and habitat preferences of honey bees over almost an entire foraging season. Moreover, by connecting this decoded dance information with colony weight recordings, I could draw conclusions about the contribution of the different habitat types to honey yield. Foraging distances generally increased with the amount of forest in the surrounding landscape. Yet, forest cover did not have an effect on colony weight. Compared to expectations based on the proportions of different habitats in the surroundings, colonies foraged more frequently in cropland and grasslands than in deciduous and coniferous forests, especially in late summer when pollen foraging in the forest is most difficult. In contrast, colonies used forests for nectar/honeydew foraging in early summer during times of colony weight gain emphasizing forests as a temporarily significant source of carbohydrates. Importantly, my study shows that the ecological and economic value of managed forest as habitat for honey bees and other wild pollinators can be significantly increased by the continuous provision of floral resources, especially for pollen foraging. The density of these wild-living honey bee colonies and their survival is driven by several factors that vary locally, making it crucial to compare results in different regions. Therefore, I investigated a wild-living honey bee population in Galicia in north-western Spain, where colonies were observed to reside in hollow electric poles (CHAPTER 5). The observed colony density only in these poles was almost twice as high as in German forest areas, suggesting generally more suitable resource conditions for the bees in Galicia. Based on morphometric analyses of their wing venation patterns, I assigned the colonies to the native evolutionary lineage (M-lineage) where the particularly threatened subspecies \(Apis\) \(mellifera\) \(iberiensis\) also belongs to. Averaged over two consecutive years, almost half of the colonies survived winter (23 out of 52). Interestingly, semi-natural areas both increased abundance and subsequent colony survival. Colonies surrounded by more semi-natural habitat (and therefore less intensive cropland) had an elevated overwintering probability, indicating that colonies need a certain amount of semi-natural habitat in the landscape to survive. Due to their ease of access these power poles in Galicia are, ideally suited to assess the population demography of wild-living Galician honey bee colonies through a long-term monitoring. In a nutshell, my thesis indicates that honey bees in Europe always existed in the wild. I performed the first survey of wild-living bee density yet done in Germany and Spain. My thesis identifies the landscape as a major factor that compromises winter survival and reports the first data on overwintering rates of wild-living honey bees in Europe. Besides, I established methods to efficiently detect wild-living honey bees in different habitat. While colonies can be found all over Europe, their survival and viability depend on unpolluted, flower rich habitats. The protection of near-natural habitat and of nesting sites is of paramount importance for the conservation of wild-living honey bees in Europe.  }, subject = {Biene}, language = {en} } @phdthesis{Seitz2020, author = {Seitz, Nicola}, title = {Bee demise and bee rise: From honey bee colony losses to finding measures for advancing entire bee communities}, doi = {10.25972/OPUS-18418}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184180}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {My dissertation comprises three studies: (1) an assessment of honey bee colony losses in the USA between 2014 and 2015, (2) an exploration of the potential of reclaimed sand mines as bee habitat, and (3) an evaluation of native and non-native pollinator friendly plants in regard to their attraction to bees. While the first study focuses on honey bees, the latter two studies primarily take wild bees or entire bee communities in focus. The study on honey bee colony losses was conducted within the framework of the Bee Informed Partnership (BIP, beeinformed.org) and aligns with the annual colony loss surveys which have been conducted in the USA since the winter of 2006/2007. It was the fourth year for which summer and annual losses were calculated in addition to winter losses. Among participants, backyard beekeepers were the largest group (n = 5690), although sideline (n = 169) and commercial (n = 78) beekeepers managed the majority (91.7 \%) of the 414 267 surveyed colonies. Overall, 15.1 \% of the estimated 2.74 million managed colonies in the USA were included in the study. Total honey bee colony losses (based on the entirety of included colonies) were higher in summer (25.3 \%) than in winter (22.3 \%) and amounted to 40.6 \% for the entire 2014/2015 beekeeping year. Average colony losses per beekeeper or operation were higher in winter (43.7 \%) than in summer (14.7 \%) and amounted to 49 \% for the entire 2014/2015 beekeeping year. Due to the dominance of backyard beekeepers among participants, average losses per operation (or unweighted loss) stronger reflected this smaller type of beekeeper. Backyard beekeepers mainly named colony management issues (e.g., starvation, weak colony in the fall) as causes for mortality, while sideline and commercial beekeepers stronger emphasized parasites or factors outside their control (e.g., varroa, nosema, queen failure). The second study took place at reclaimed sand mines. Sand mines represent anthropogenically impacted habitats found worldwide, which bear potential for bee conservation. Although floral resources can be limited at these habitats, vegetation free patches of open sandy soils and embankments may offer good nesting possibilities for sand restricted and other bees. We compared bee communities as found in three reclaimed sand mines and at adjacent roadside meadows in Maryland, USA, over two years. Both sand mines and roadsides hosted diverse bee communities with 111 and 88 bee species, respectively. Bee abundances as well as richness and Shannon diversity of bee species were higher in sand mines than at roadsides and negatively correlated with the percentage of vegetational ground cover. Species composition also differed significantly between habitats. Sand mines hosted a higher proportion of ground nesters, more uncommon and more 'sand loving' bees similar to natural sandy areas of Maryland. Despite the destruction of the original pre-mining habitat, sand mines thus appear to represent a unique habitat for wild bees, particularly when natural vegetation and open sand spots are encouraged. Considering habitat loss, the lack of natural disturbance regimes, and ongoing declines of wild bees, sand mines could add promising opportunities for bee conservation which has hitherto mainly focused on agricultural and urban habitats. The third study was an experimental field study on pollinator friendly plants. Bees rely on the pollen and nectar of plants as their food source. Therefore, pollinator friendly plantings are often used for habitat enhancements in bee conservation. Non-native pollinator friendly plants may aid in bee conservation efforts, but have not been tested and compared with native pollinator friendly plants in a common garden experiment. In this study, we seeded mixes of 20 native and 20 non-native pollinator friendly plants in two separate plots at three sites in Maryland, USA. For two years, we recorded flower visitors to the plants throughout the blooming period and additionally sampled bees with pan traps. A total of 3744 bees (120 species) were sampled in the study. Of these, 1708 bees (72 species) were hand netted directly from flowers for comparisons between native and non-native plants. Depending on the season, bee abundance and species richness was either similar or lower (early season and for richness also late season) at native plots compared to non-native plots. Additionally, the overall bee community composition differed significantly between native and non-native plots. Furthermore, native plants were associated with more specialized plant-bee visitation networks compared to non-native plants. In general, visitation networks were more specialized in the early season than the later seasons. Four species (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, and Xylocopa virginica) out of the five most abundant bee species (also including Apis mellifera) foraged more specialized on native than non-native plants. Our study showed that non-native plants were well accepted by a diverse bee community and had a similar to higher attraction for bees compared to native plants. However, we also demonstrated alterations in foraging behavior, bee community assemblage, and visitation networks. As long as used with caution, non-native plants can be a useful addition to native pollinator friendly plantings. This study gives a first example of a direct comparison between native and non-native pollinator friendly plants.}, subject = {Biene}, language = {en} } @phdthesis{Nuernberger2018, author = {N{\"u}rnberger, Fabian}, title = {Timing of colony phenology and foraging activity in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment.}, subject = {Biene}, language = {en} } @book{Heyer2018, author = {Heyer, Marlis}, title = {Von Menschenkindern und Honigbienen. Multispecies-Perspektiven auf Begegnungen am Bienenstand.}, doi = {10.25972/OPUS-16707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167072}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {60}, year = {2018}, abstract = {Honigbienen und Menschenkinder begegnen sich unter der Anleitung von Imker_innen an vielen Orten in Berlin. Doch auch wenn Kinder Honig essen, Biene Maja im Fernsehen anschauen oder vor dem drohenden Stich gewarnt werden, sind sie mit Bienen in Kontakt und konzipieren die Insekten als nicht-menschliche Andere. Die vorliegende Arbeit geht der Frage nach, wie die allt{\"a}glichen und oftmals pop-kulturell gepr{\"a}gten kindlichen Vorstellungen von Bienen die multispecies-Begegnungen in der mensch-bienlichen contact zone mitgestalten. Welche Art Bienen treffen Kinder eigentlich, wenn sie einen Imker_innenstand besuchen? Was f{\"u}r ein Wesen begegnet ihnen, kann ihnen {\"u}berhaupt auf Basis ihres Vorwissens begegnen? Und wie begegnen die Bienen ihrerseits den Kindern? Mit ethnografischen Methoden und sprachlichem Feingef{\"u}hl analysiert Marlis Heyer die Begegnungen der Akteur_innen und lotet dabei auch die M{\"o}glichkeiten und Grenzen der Europ{\"a}ischen Ethnologie aus, sich mit nicht-menschlichen Anderen zu besch{\"a}ftigen.}, subject = {Biene}, language = {de} } @phdthesis{Kropf2018, author = {Kropf, Jan}, title = {The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.}, subject = {Voltage-Clamp-Methode}, language = {en} } @phdthesis{Lichtenstein2018, author = {Lichtenstein, Leonie}, title = {Color vision and retinal development of the compound eye in bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The superfamiliy of bees, Apiformes, comprises more than 20,000 species. Within the group, the eusocial species like honeybees and bumblebees are receiving increased attention due to their outstanding importance for pollination of many crop and wild plants, their exceptional eusocial lifestyle and complex behavioral repertoire, which makes them an interesting invertebrate model to study mechanisms of sensory perception, learning and memory. In bees and most animals, vision is one of the major senses since almost every living organism and many biological processes depend on light energy. Bees show various forms of vision, e.g. color vision, achromatic vision or polarized vision in order to orientate in space, recognize mating partners, detect suitable nest sites and search for rewarding food sources. To catch photons and convert light energy into electric signals, bees possess compound eyes which consists of thousands of single ommatidia comprising a fixed number of photoreceptors; they are characterized by a specific opsin protein with distinct spectral sensitivity. Different visual demands, e.g. the detection of a single virgin queen by a drone, or the identification and discrimination of flowers during foraging bouts by workers, gave rise to the exceptional sex-specific morphology and physiology of male and female compound eyes in honeybees. Since Karl von Frisch first demonstrated color vision in honeybees more than 100 years ago, much effort has been devoted to gain insight into the molecular, morphological and physiological characteristics of (sex-specific) bee compound eyes and the corresponding photoreceptors. However, to date, almost nothing is known about the underlying mechanisms during pupal development which pattern the retina and give rise to the distinct photoreceptor distribution. Hence, in Chapter 2 and 3 I aimed to better understand the retinal development and photoreceptor determination in the honeybee eye. In a first step, the intrinsic temporal expression pattern of opsins within the retina was evaluated by quantifying opsin mRNA expression levels during the pupal phase of honeybee workers and drones. First results revealed that honeybee workers and drones express three different opsin genes, UVop, BLop and Lop1 during pupal development which give rise to an ultraviolet, blue, and green-light sensitive photoreceptor. Moreover, opsin expression patterns differed between both sexes and the onset of a particular opsin occurred at different time points during retinal development. Immunostainings of the developing honeybee retina in Chapter 2 showed that at the beginning of pupation the retina consist only of a thin hypodermis. However, at this stage all retinal structures are already present. From about mid of pupation, opsin expression levels increase and goes hand in hand with the differentiation of the rhabdoms, suggesting a two-step process in photoreceptor development and differentiation in the honeybee compound eye. In a first step the photoreceptor cells meet its fate during late pupation; in a second step, the quantity of opsin expression in each photoreceptor strongly increase up to the 25-fold shortly after eclosion. To date, the underlying mechanisms leading to different photoreceptor types have been intensively studied in the fruit fly, Drosophila melanogaster, and to some extend in butterflies. Interestingly, the molecular mechanisms seemed to be conserved within insects and e.g. the two transcription factors, spalt and spineless, which have been shown to be essential for photoreceptor determination in flies and butterflies, have been also identified in the honeybee. In chapter 3, I investigated the expression patterns of both transcription factors during pupal development of honeybee workers and showed that spalt is mainly expressed during the first few pupal stages which might correlate with the onset of BLop expression. Further, spineless showed a prominent peak at mid of pupation which might initiates the expression of Lop1. However, whether spalt and spineless are also essential for photoreceptor determination in the honeybee has still to be investigated, e.g. by a knockdown/out of the respective transcription factor during retinal development which leads to a spectral phenotype, e.g. a dichromatic eye. Such spectral phenotypes can then be tested in behavioral experiments in order to test the function of specific photoreceptors for color perception and the entrainment of the circadian clock. In order to evaluate the color discrimination capabilities of bees and the quality of color perception, a reliable behavioral experiment under controlled conditions is a prerequisite. Hence, in chapter 4, I aimed to establish the visual PER paradigm as a suitable method for behaviorally testing color vision in bees. Since PER color vision has considered to be difficult in bees and was not successful in Western honeybees without ablating the bee's antennae or presenting color stimuli in combination with other cues for several decades, the experimental setup was first established in bumblebees which have been shown to be robust and reliable, e.g. during electrophysiological recordings. Workers and drones of the bufftailed bumblebee, Bombus terrestris were able to associate different monochromatic light stimuli with a sugar reward and succeeded in discriminating a rewarded color stimulus from an unrewarded color stimulus. They were also able to retrieve the learned stimulus after two hours, and workers successfully transferred the learned information to a new behavioral context. In the next step, the experimental setup was adapted to honeybees. In chapter 5, I tested the setup in two medium-sized honeybees, the Eastern honeybee, Apis cerana and the Western honeybee, Apis mellifera. Both honeybee species were able to associate and discriminate between two monochromatic light stimuli, blue and green light, with peak sensitivities of 435 nm and 528 nm. Eastern and Western honeybees also successfully retrieve the learned stimulus after two hours, similar to the bumblebees. Visual conditioning setups and training protocols in my study significantly differed from previous studies using PER conditioning. A crucial feature found to be important for a successful visual PER conditioning is the duration of the conditioned stimulus presentation. In chapter 6, I systematically tested different length of stimuli presentations, since visual PER conditioning in earlier studies tended to be only successful when the conditioned stimulus is presented for more than 10 seconds. In this thesis, intact honeybee workers could successfully discriminate two monochromatic lights when the stimulus was presented 10 s before reward was offered, but failed, when the duration of stimulus presentation was shorter than 4 s. In order to allow a more comparable conditioning, I developed a new setup which includes a shutter, driven by a PC based software program. The revised setup allows a more precise and automatized visual PER conditioning, facilitating performance levels comparable to olfactory conditioning and providing now an excellent method to evaluate visual perception and cognition of bees under constant and controlled conditions in future studies.}, subject = {Biene}, language = {en} }