@phdthesis{Schliemann2004, author = {Schliemann, Andreas Ulrich}, title = {Untersuchung von miniaturisierten GaAs/AlGaAs Feldeffekttransistoren und GaAs/InGaAs/AlGaAs Flash-Speichern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden elektronische Bauelemente wie Feldeffekttransistoren, elektronische Speicherelemente sowie resonante Tunneldioden hinsichtlich neuartiger Transporteigenschaften untersucht, die ihren Ursprung in der Miniaturisierung mit Ausdehnungen kleiner als charakteristische Streul{\"a}ngen haben. Die Motivation der vorliegenden Arbeit lag darin, die Physik nanoelektronischer Bauelemente durch einen neuen Computercode: NANOTCAD nicht nur qualitativ sondern auch quantitativ beschreiben zu k{\"o}nnen. Der besondere Schwerpunkt der Transportuntersuchungen lag im nicht-linearen Transportbereich f{\"u}r Vorw{\"a}rtsspannungen, bei denen die Differenz der elektrochemischen Potentiale im aktiven Bereich der Bauelemente bei Weitem gr{\"o}ßer als die thermische Energie der Ladungstr{\"a}ger ist, da nur im nicht-linearen Transportbereich die f{\"u}r eine Anwendung elektronischer Bauelemente notwendige Gleichrichtung und Verst{\"a}rkung auftreten kann. Hierzu war es notwendig, eine detaillierte Charakterisierung der Bauelemente durchzuf{\"u}hren, damit m{\"o}glichst viele Parameter zur genauen Modellierung zur Verf{\"u}gung standen. Als Ausgangsmaterial wurden modulationsdotierte GaAs/AlGaAs Heterostrukturen gew{\"a}hlt, da sie in hervorragender struktureller G{\"u}te mit Hilfe der Molekularstrahllithographie am Lehrstuhl f{\"u}r Technische Physik mit angegliedertem Mikrostrukturlabor hergestellt werden k{\"o}nnen. Im Rahmen dieser Arbeit wurde zun{\"a}chst ein Verfahren zur Bestimmung der Oberfl{\"a}chenenergie entwickelt und durchgef{\"u}hrt, das darauf beruht, die Elektronendichte eines nahe der Oberfl{\"a}che befindlichen Elektronengases in Abh{\"a}ngigkeit unterschiedlicher Oberfl{\"a}chenschichtdicken zu bestimmen. Es zeigte sich, dass die so bestimmte Oberfl{\"a}chenenergie, einen {\"a}ußerst empfindlichen Parameter zur Beschreibung miniaturisierter Bauelemente darstellt. Um die miniaturisierte Bauelemente zu realisieren, kamen Herstellungsverfahren der Nanostrukturtechnik wie Elektronenstrahllithographie und diverse {\"A}tztechniken zum Einsatz. Durch Elektronmikroskopie wurde die Geometrie der nanostrukturierten Bauelemente genau charakterisiert. Transportmessungen wurden durchgef{\"u}hrt, um die Eingangs- und Ausgangskennlinien zu bestimmen, wobei die Temperatur zwischen 1K und Raumtemperatur variiert wurde. Die temperaturabh{\"a}ngigen Analysen erlaubten es, die Rolle inelastischer Streuereignisse im Bereich des quasi-ballistischen Transports zu analysieren. Die Ergebnisse dieser Arbeit wurden dazu verwendet, um die NANOTCAD Simulationswerkzeuge soweit zu optimieren, dass quantitative Beschreibungen von stark miniaturisierten, elektronischen Bauelementen durch einen iterativen L{\"o}sungsalgorithmus der Schr{\"o}dingergleichung und der Poissongleichung in drei Raumdimensionen m{\"o}glich sind. Zu Beginn der Arbeit wurden auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen eine Vielzahl von Quantenpunktkontakten, die durch Verarmung eines zweidimensionalen Elektronengases durch spitz zulaufende Elektrodenstrukturen realisiert wurden, untersucht. Variationen der Splitgate-Geometrien wurden statistisch erfasst und mit NanoTCADSimulationen verglichen. Es konnte ein hervorragende {\"U}bereinstimmung in der Schwellwertcharakteristik von Quantenpunktkontakten und Quantenpunkten gefunden werden, die auf der genauen Beschreibung der Oberfl{\"a}chenzust{\"a}nde und der Erfassung der realen Geometrie beruhen. Ausgehend von diesen Grundcharakterisierungen nanoelektronischer Bauelemente wurden 3 Klassen von Bauelementen auf der Basis des GaAs/AlGaAs Halbleitersystems detailliert analysiert.}, subject = {Galliumarsenid}, language = {de} }