@article{LotzHerrmannNotzetal.2021, author = {Lotz, Christopher and Herrmann, Johannes and Notz, Quirin and Meybohm, Patrick and Kehl, Franz}, title = {Mitochondria and pharmacologic cardiac conditioning — At the heart of ischemic injury}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22063224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285368}, year = {2021}, abstract = {Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.}, language = {en} } @phdthesis{Tichy2011, author = {Tichy, Michael}, title = {On algebraic aggregation methods in additive preconditioning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56541}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In the following dissertation we consider three preconditioners of algebraic multigrid type, though they are defined for arbitrary prolongation and restriction operators, we consider them in more detail for the aggregation method. The strengthened Cauchy-Schwarz inequality and the resulting angle between the spaces will be our main interests. In this context we will introduce some modifications. For the problem of the one-dimensional convection we obtain perfect theoretical results. Although this is not the case for more complex problems, the numerical results we present will show that the modifications are also useful in these situation. Additionally, we will consider a symmetric problem in the energy norm and present a simple rule for algebraic aggregation.}, subject = {Pr{\"a}konditionierung}, language = {en} }