@phdthesis{Saedtler2021, author = {Saedtler, Marco}, title = {Pharmaceutical formulation strategies for novel antibiotic substances utilizing salt formation and two- and three-dimensional printing techniques}, doi = {10.25972/OPUS-21978}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219784}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Salt formation is a routinely used strategy for poorly water-soluble drugs and traditionally performed with small inorganic counterions. High energy crystal lattices as well as effects on the local pH within the aqueous boundary layer during dissolution drive the increased dissolution rate and apparent solubility. Ionic liquids however, by definition low melting ionic salts with often large organic counterions, combine an increased dissolution rate with solubilization of the drug by the counterion itself. Long lasting supersaturation profiles of increased kinetic solubility were reported for several drugs formulated as ionic liquids increasing their overall bioavailability. Furthermore, aggregation and micellization between highly lipophilic compounds and amphiphilic bile acids was described before, demonstrating the capabilities of the human body itself to utilize solubilization of poorly water-soluble compounds. Development of novel counterions not only tailoring the desired physicochemical properties e.g. dissolution rate of the parent drug but adding - in a best-case scenario synergistic - pharmacological activity has been driven forward in the last years. However, salt formation can only be applied for ionizable i.e. acidic or basic compounds. While co-crystals can be used as a nonionized alternative, their formation is not always successful leading to an urgent need for other formulation strategies. In these lines, development of 2D and 3D printing techniques has been ongoing for the last decades and their pharmaceutical application has been demonstrated. The versatile nature and commercial availability allow a decentralized production further elaborating this technique for a highly flexible and patient-oriented supply with medication. This thesis focuses on the theoretical background and potential application of salt formation in the pharmaceutical development of a drug candidate. The first section presents the current knowledge and state of the art in preparation of low melting ionic liquids i.e. salts and is translated to the in vitro investigation of molecular interaction between the poorly water-soluble drug imatinib and components of the human intestinal fluid in the second section. Development of novel antibiotic counterions and assessment of their potential use in pharmaceutical formulations with fluoroquinolones is described in the last two sections. Chapter I describes the application of low melting ionic liquids in pharmaceutical formulation and details their development in the last two decades from versatile organic solvents in chemical synthesis towards amorphous strategies for drug delivery. The chapter gives a general overview on molecular structure and physicochemical properties of several drug containing ionic liquids and details the mechanisms which attribute to a typically fast dissolution, increased aqueous solubility as well as enhanced permeation which was reported in several publications. Chapter II translates the increased aqueous solubility of drugs by an organic counterion to the human gastrointestinal tract with taurocholate and lecithin as main drivers for the solubilization of highly lipophilic and poorly water-soluble drugs. Investigation of the interaction of imatinib - a poorly water-soluble weak base - with fasted- and fed state simulated intestinal fluids revealed a complex interplay between the components of the intestinal fluid and the drug. Mixed vesicles and micelles were observed in concentration dependent aggregation assays and revealed differences in their size, molecular arrangement as well as composition, depending on the tested drug concentration. Overall, the study outlines the effective interaction of weakly basic drugs with taurocholate and lecithin to minimize recrystallization during intestine passage finally leading to favorable supersaturation profiles. Chapter III focuses on the development of novel antibiotic counterions which potentially move the evolution of ionic liquids from a pharmaceutical salt with tailored physicochemical properties to a synergistic combination of two active pharmaceutical ingredients. The natural occurring anacardic acid derived from the cashew nut shell inspired a series of antibacterial active acidic compounds with increasing alkyl chain length. Their physicochemical properties, antibacterial activity, bacterial biofilm inhibition and cytotoxicity were detailed and in vivo activity in a Galleria mellonella model was assessed. This group of anacardic acid derivatives is synthetically accessible, easily modifiable and yielded two compounds with favorable activity and physicochemical profile for further drug development. Chapter IV outlines the potential application of anacardic acid derivatives in pharmaceutical formulations by salt formation with fluoroquinolone antibiotics as well as novel techniques such as 2D/3D printing for preparation of drug imprinted products. Despite anacardic acid derivatives demonstrated promising physicochemical properties, salt formation with fluoroquinolone antibiotics was not feasible. However, 2D/3D printed samples with anacardic acid derivative alone or in combination with ciprofloxacin demonstrated physical compatibility between drug and matrix as well as antibacterial activity against three S. aureus strains in an agar diffusion assay. Conclusively, drug printing can be applied for the herein tested compounds, but further process development is necessary. In summary, preparation of low melting ionic liquids, salts or co-crystals is an appropriate strategy to increase the aqueous solubility of poorly water-soluble drugs and tailor physicochemical properties. The counterion itself solubilizes the drug and furthermore potentially interferes with the complex micellar environment in the human intestine. However, salt formation as routinely used formulation strategy is not feasible in every case and development of alternative techniques is crucial to hurdle challenges related to unfavorable physicochemical properties. The outlined techniques for 2D/3D drug printing provide versatile production of drug products while extending the design space for novel drug development.}, subject = {L{\"o}slichkeit}, language = {en} } @phdthesis{Schlauersbach2023, author = {Schlauersbach, Jonas}, title = {The bile-drug-excipient interplay}, doi = {10.25972/OPUS-29653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The bile system in vertebrates is an evolutionary conserved endogenous solubilization system for hydrophobic fats and poorly water-soluble vitamins. Bile pours out from the gallbladder through the common bile duct into the duodenum triggered by cholecystokinin. Cholecystokinin is released from enteroendocrine cells after food intake. The small intestine is also the absorption site of many orally administered drugs. Most emerging drug candidates belong to the class of poorly water-soluble drugs (PWSDs). Like hydrophobic vitamins, these PWSDs might as well be solubilized by bile. Therefore, this natural system is of high interest for drug formulation strategies. Simulated intestinal fluids containing bile salts (e.g., taurocholate TC) and phospholipids (e.g., lecithin L) have been widely applied over the last decade to approximate the behavior of PWSDs in the intestine. Solubilization by bile can enhance the oral absorption of PWSDs being at least in part responsible for the positive "food effect". The dissolution rate of PWSDs can be also enhanced by the presence of bile. Furthermore, some PWSDs profit from supersaturation stabilization by bile salts. Some excipients solubilizing PWSDs seemed to be promising candidates for drug formulation when investigated in vitro without bile. When tested in vivo, these excipients reduced the bioavailability of drugs. However, these observations have been hardly examined on a molecular level and general links between bile interaction in vitro and bioavailability are still missing. This thesis investigated the interplay of bile, PWSDs, and excipients on a molecular level, providing formulation scientists a blueprint for rational formulation design taking bile/PWSD/excipient/ interaction into account. The first chapter focus on an in silico 1H nuclear magnetic resonance (NMR) spectroscopy-based algorithm for bile/drug interaction prediction. Chapter II to IV report the impact of excipients on bioavailability of PWSDs interacting with bile. At last, we summarized helpful in vitro methods for drug formulation excipient choice harnessing biopharmaceutic solubilization in chapter V. Chapter I applies 1H NMR studies with bile and drugs on a large scale for quantitative structure-property relationship analysis. 141 drugs were tested in simulated intestinal media by 1H NMR. Drug aryl-proton signal shifts were correlated to in silico calculated molecular 2D descriptors. The probability of a drug interacting with bile was dependent on its polarizability and lipophilicity, whereas interaction with lipids in simulated intestinal media components was dependent on molecular symmetry, lipophilicity, hydrogen bond acceptor capability, and aromaticity. The probability of a drug to interact with bile was predictive for a positive food effect. This algorithm might help in the future to identify a bile and lipid interacting drug a priori. Chapter II investigates the impact of excipients on bile and free drug fraction. Three different interaction patterns for excipients were observed. The first pattern defined excipients that interacted with bile and irreversibly bound bile. Therefore, the free drug fraction of bile interacting drugs increased. The second pattern categorized excipients that formed new colloidal entities with bile which had a high affinity to bile interacting drugs. These colloids trapped the drug and decreased the free drug fraction. The last excipient pattern described excipients that formed supramolecular structures in coexistence with bile and had no impact on the free drug fraction. These effects were only observed for drugs interacting with bile (Perphenazine and Imatinib). Metoprolol's free drug fraction, a compound not interacting with bile, was unaffected by bile or bile/excipient interaction. We hypothesized that bile/excipient interactions may reduce the bioavailability of bile interacting drugs. Chapter III addresses the hypothesis from chapter II. A pharmacokinetic study in rats revealed that the absorption of Perphenazine was reduced by bile interacting excipients due to bile/excipient interaction. The simultaneous administration of excipient patterns I and II did not further reduce or enhance Perphenazine absorption. Conversely, the absorption of Metoprolol was not impacted by excipients. This reinforced the hypothesis, that drugs interacting with bile should not be formulated with excipients also interacting with bile. Chapter IV further elaborates which in vitro methods using simulated intestinal fluids are predictive for a drug's pharmacokinetic profile. The PWSD Naporafenib was analyzed in vitro with simulated intestinal fluids and in presence of excipients regarding solubility, supersaturation, and free drug fraction. Naporafenib showed a strong interaction with TC/L from simulated bile. Assays with TC/L, but not without identified one excipient as possibly bioavailability reducing, one as supersaturation destabilizing, and the last as bile not interacting and supersaturation stabilizing excipient. A pharmacokinetic study in beagle dogs outlined and confirmed the in vitro predictions. The Appendix summarizes in vivo predictive methods as presented in chapter I to IV and rationalizes experimental design paving the way towards a biopharmaceutic excipient screening. The first presented preliminary decision tree is transformed into a step-by-step instruction. The presented decision matrix might serve as a blueprint for processes in early phase drug formulation development. In summary, this thesis describes how a drug can be defined as bile interacting or non-interacting and gives a guide as well how to rate the impact of excipients on bile. We showed in two in vivo studies that bile/excipient interaction reduced the bioavailability of bile interacting drugs, while bile non-interacting drugs were not affected. We pointed out that the bile solubilization system must be incorporated during drug formulation design. Simulated gastrointestinal fluids offer a well-established platform studying the fate of drugs and excipients in vivo. Therefore, rational implementation of biopharmaceutic drug and excipient screening steers towards efficacy of oral PWSD formulation design.}, subject = {Solubilisation}, language = {en} } @phdthesis{Hanio2024, author = {Hanio, Simon}, title = {The impact of bile on intestinal permeability of drug substances}, doi = {10.25972/OPUS-34890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348906}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Most medicines are taken orally. To enter the systemic circulation, they dissolve in the intestinal fluid, cross the epithelial barrier, and pass through the liver. Intestinal absorption is driven by the unique features of the gastrointestinal tract, including the bile colloids formed in the lumen and the mucus layer covering the intestinal epithelium. Neglecting this multifaceted environment can lead to poor drug development decisions, especially for poorly water-soluble drugs that interact with bile and mucus. However, there is a lack of a rationale nexus of molecular interactions between oral medicines and gastrointestinal components with drug bioavailability. Against this background, this thesis aims to develop biopharmaceutical strategies to optimize the presentation of oral therapeutics to the intestinal epithelial barrier. In Chapter 1, the dynamics of bile colloids upon solubilization of the poorly-water soluble drug Perphenazine was studied. Perphenazine impacted molecular arrangement, structure, binding thermodynamics, and induced a morphological transition from vesicles to worm-like micelles. Despite these dynamics, the bile colloids ensured stable relative amounts of free drug substance. The chapter was published in Langmuir. Chapter 2 examined the impact of pharmaceutical polymeric excipients on bile-mediated drug solubilization. Perphenazine and Imatinib were introduced as model compounds interacting with bile, whereas Metoprolol did not. Some polymers altered the arrangement and geometry of bile colloids, thereby affecting the molecularly soluble amount of those drugs interacting with bile. These insights into the bile-drug-excipient interplay provide a blueprint to optimizing formulations leveraging bile solubilization. The chapter was published in Journal of Controlled Release. Chapter 3 deals with the impact of bile on porcine intestinal mucus. Mucus exposed to bile solution changed transiently, it stiffened, and the overall diffusion rate increased. The bile-induced changes eased the transport of the bile-interacting drug substance Fluphenazine, whereas Metoprolol was unaffected. This dichotomous pattern was linked to bioavailability in rats and generalized based on two previously published data sets. The outcomes point to a bile-mucus interaction relevant to drug delivery. The chapter is submitted. The Appendix provides a guide for biopharmaceutical characterization of drug substances by nuclear magnetic resonance spectroscopy aiming at establishing a predictive algorithm. In summary, this thesis deciphers bile-driven mechanisms shaping intestinal drug absorption. Based on these molecular insights, pharmaceuticals can be developed along a biopharmaceutical optimization, ultimately leading to better oral drugs of tomorrow.}, subject = {Solubilisation}, language = {en} }