@incollection{Klein2007, author = {Klein, Ralf}, title = {Der probabilistische Ansatz zur Modellierung des r{\"a}umlichen Einkaufsverhaltens}, series = {Analysemethodik und Modellierung in der geographischen Handelsforschung}, booktitle = {Analysemethodik und Modellierung in der geographischen Handelsforschung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185990}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {55-73}, year = {2007}, abstract = {No abstract available.}, language = {de} } @book{OPUS4-18040, title = {Analysemethodik und Modellierung in der geographischen Handelsforschung}, editor = {Klein, Ralf and Rauh, J{\"u}rgen}, publisher = {L.I.S. Verlag}, address = {Passau}, isbn = {978-3-932820-32-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180402}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {153}, year = {2007}, abstract = {Methoden und Techniken sind in der geographischen Handelsforschung gleichermaßen in der Grundlagenforschung, in der universit{\"a}renAusbildung, in der praktischen Anwendung und der Fortbildung von hoher Bedeutung. Der vorliegende Band vertieft einige bekannte methodische Aspekte, setzt aber auch neue Akzente hinsichtlich Analysemethodik und Modellierung. Die Beitr{\"a}ge in dem vorliegenden Band zeigen weitergehende M{\"o}glichkeiten auf, in der geographischen Handelsforschung und insbesondere der Praxis bedeutsame Fragestellungen methodisch fassen und behandeln zu k{\"o}nnen. Die Reihenfolge der Beitr{\"a}ge ist thematisch gegliedert. Die Thematik wird zun{\"a}chst eher allgemein orientiert vorgestellt und dann mittels einer bestimmten Fragestellung oder Untersuchung konkretisiert. So wird der umfassende Beitrag von K. E. Klein zum Einsatz geographischer Informationssysteme im Einzelhandel durch die Studie von J. Scharfenberger zu mikrogeographischen Routing- und Marktpotenzialanalysen erg{\"a}nzt. Die Modellierung und Prognose von Marktgebieten im Einzelhandel wird von R. Klein zun{\"a}chst allgemein diskutiert und durch die Untersuchungen von C. Kanh{\"a}usser vertieft. Die Beitr{\"a}ge von R. Hesse / A. Schmid sowie J. Rauh / T. Schenk / M. Fehler / F. Kl{\"u}gl / F. Puppe zeigen mit Simulationsmodellen und der r{\"a}umlichen Optimierung neue methodische Anwendungsm{\"o}glichkeiten auf, die geeignet sind, die in der Regel vorhandene Trennung zwischen der individualistischen und der strukturellen Perspektive aufzul{\"o}sen. Erstgenannte wird in der Regel z.B. bei der Untersuchung des Konsumentenverhaltens eingenommen, die Letztgenannte bei der (Standort-)Analyse der Angebotsseite.}, subject = {Handelsforschung}, language = {de} } @phdthesis{Bachmann2007, author = {Bachmann, Martin U. R.}, title = {Automatisierte Ableitung von Bodenbedeckungsgraden durch MESMA-Entmischung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26337}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Weltweit sind Trockengebiete in st{\"a}ndiger Ver{\"a}nderung, verursacht durch nat{\"u}rliche klimatische Schwankungen und oftmals durch Prozesse der Landdegradation. Auch weisen die meisten semi-ariden Naturr{\"a}ume eine große r{\"a}umliche Heterogenit{\"a}t auf, hervorgerufen durch ein kleinr{\"a}umiges Mosaik aus Gr{\"a}sern, kleineren Str{\"a}uchern und Bereichen offenliegenden Bodens. Die Dichte der Vegetation wird prim{\"a}r vom pflanzenverf{\"u}gbaren Wasser bestimmt, aber auch der Entwicklungs- und Degradationszustand der B{\"o}den sowie anthropogen bedingte Faktoren spielen hierbei eine Rolle. Zur Charakterisierung und Kartierung der Vegetation sowie zur Bewertung des Bodenerosionsrisikos und des Degradationszustands hat sich die Erhebung der Bedeckungsgrade von vitaler, photosynthetisch aktiver Vegetation (PV), von abgestorbener oder zeitweise vertrockneter und somit nicht photosynthetisch aktiver Vegetation (NPV) sowie von offenliegendem Boden als zweckm{\"a}ßig herausgestellt. Die Nutzung der Fernerkundung f{\"u}r diese Aufgabe erfolgt zumeist nur f{\"u}r kleinmaßst{\"a}bige Kartierungen und - im Falle von Multispektralsensoren - unter Vernachl{\"a}ssigung nicht-photosynthetisch aktiver Vegetation. Die r{\"a}umliche Variabilit{\"a}t der Vegetation-Boden-Mosaike liegt oftmals in der Gr{\"o}ßenordnung von wenigen Metern und somit unterhalb des r{\"a}umlichen Aufl{\"o}sungsverm{\"o}gens von Fernerkundungssystemen. Um dennoch die verschiedenen Anteile innerhalb eines Pixels identifizieren und quantifizieren zu k{\"o}nnen, sind Methoden der Subpixel-Klassifikation notwendig. In dieser Arbeit wird eine Methodik zur verbesserten und automatisierbaren Ableitung von Bodenbedeckungsgraden in semi-ariden Naturr{\"a}umen vorgestellt. Hierzu wurde ein Verfahren zur linearen spektralen Entmischung in Form einer Multiple Endmember Spectral Mixture Analysis (MESMA) entwickelt und umgesetzt. Durch diese Methodik kann explizit die spektrale Variabilit{\"a}t von Vegetation und Boden in das Mischungsmodellmiteinbezogen werden, und quantitative Anteile f{\"u}r die funktionalen Klassen PV, NPV und Boden innerhalb eines Pixels erfasst werden. Durch die r{\"a}umliche Kartierung der verwendeten EM wird weiterhin eine thematische Klassifikation erreicht. Die hierf{\"u}r ben{\"o}tigten Informationen k{\"o}nnen - wie im Falle der Spektren reiner Materialien (EM-Spektren) - aus den Bilddaten selbst abgeleitet werden, oder k{\"o}nnen - wie ein Gel{\"a}ndemodell und die Information {\"u}ber den Scanwinkel - im Zuge der Vorprozessierung aus weiteren Datenquellen erzeugt werden. Hinsichtlich der automatisierten EM-Ableitung wird eine zweistufige Methodik eingesetzt, welche auf einer angepassten Version des Sequential Maximum Angle Convex Cone (SMACC)-Verfahrens sowie der Analyse einer ersten Entmischungsiteration basiert. Die Klassifikation der gefundenen potentiellen EM erfolgt durch ein merkmalsbasiertes Verfahren. Weiterhin weisen nicht-photosynthetisch aktive Vegetation und Boden eine hohe spektrale {\"A}hnlichkeit auf. Zur sicheren Trennung kann die Identifikation schmaler Absorptionsbanden dienen. Zu diesen z{\"a}hlen beispielsweise die Absorptionsbanden von Holozellulose und - je nach Bodentyp - Absorptionsbanden von Bodenmineralen. Auch die spektrale Variabilit{\"a}t der Klassen PV und NPV erfordert zur sicheren Unterscheidung die Verwendung biophysikalisch erkl{\"a}rbarer Merkmale im Spektrum. Hierzu z{\"a}hlen unter anderem die St{\"a}rke der Chlorophyll-Absorption, die Form und Lage der 'RedEdge' und das Auftreten von Holozellulosebanden. Da diese spektrale Information bei herk{\"o}mmlichen Entmischungsans{\"a}tzen nicht ber{\"u}cksichtigt wird, erfolgt {\"u}berwiegend eine Optimierung der Gesamtalbedo, was zu einer schlechten Trennung der Klassen f{\"u}hren kann. Aus diesem Grund wird in der vorliegenden Arbeit der MESMA-Ansatz dahingehend erweitert, dass spektrale Information in Form von identifizierten und parametrisierten Absorptionsbanden in den Entmischungsprozess mit einfließt und hierdurch das Potential hyperspektraler Datens{\"a}tze besser genutzt werden kann. Auch wird in einer zus{\"a}tzlichen Entmischungsiteration die r{\"a}umliche Nachbarschaft betrachtet, um insbesondere die Verwendung des sinnvollsten Boden-EMs zu gew{\"a}hrleisten. Ein zus{\"a}tzliches Problemfeld stellt die numerische L{\"o}sung des {\"u}berbestimmten und oftmals schlecht konditionierten linearen Mischungsmodells dar. Hierzu kann durch die Verwendung des BVLS-Algorithmus und des Ausschlusses kritischer EM-Kombinationen eine numerisch stabile L{\"o}sung gefunden werden. Um die oftmals immense Rechenzeit von MESMA-Verfahren zu verk{\"u}rzen, besteht die M{\"o}glichkeit einer iterativen EM-Auswahl und somit die Vermeidung einer L{\"o}sung des Mischungssystems durch Berechnung aller EM-Kombinationen ('Brute-Force'-Ansatz). Ein weiterer wichtiger Punkt ist die explizite pixelweise Angabe zur Zuverl{\"a}ssigkeit der Entmischungsergebnisse. Dies erfolgt auf Basis des Mischungsmodells selbst, durch den Vergleich zu empirischen Regressionsmodellen, durch die Ber{\"u}cksichtigung des lokalen Einfallswinkels sowie durch die Integration von Qualit{\"a}tsangaben der Ausgangsdaten. Um das Verfahren systematisch und unter kontrollierten Bedingungen zu verifizieren und um den Einfluss verschiedener externer Parameter sowie die typischen Genauigkeiten auf einer breiten Datenbasis zu ermitteln, wird eine Simulationskette zur Erzeugung synthetischer Mischungen erstellt. In diese Simulationen fließen Feldspektren von B{\"o}den und Pflanzen verschiedener semi-arider Gebiete mit ein, um m{\"o}glichst viele F{\"a}lle abdecken zu k{\"o}nnen. Die eigentliche Validierung erfolgt auf HyMap-Datens{\"a}tzen des Naturparks 'Cabo de Gata' in der andalusischen Provinz Almer{\´i}a sowie auf Messungen, die begleitend im Feld durchgef{\"u}hrt wurden. Hiermit konnte die Methodik auf ihre Genauigkeit unter den konkreten Anforderungen des Anwendungsbeispiels {\"u}berpr{\"u}ft werden. Die erzielbare Genauigkeit dieser automatisierten Methodik liegt mit einem mittleren Fehler um rund 10\% Abundanz absolut im selben Wertebereich oder nur geringf{\"u}gig h{\"o}her als die Ergebnisse publizierter manueller MESMA-Ans{\"a}tze. Weiterhin konnten die typischen Genauigkeiten der Verifikation im Zuge der Validierung best{\"a}tigt werden. Den limitierenden Faktor des Ansatzes stellen in der Praxis fehlerhafte oder unvollst{\"a}ndige EM-Modelle dar. Mit der vorgestellten Methodik ist somit die M{\"o}glichkeit gegeben, die Bedeckungsgrade quantitativ und automatisiert im Subpixelbereich zu erfassen.}, subject = {Optische Fernerkundung}, language = {de} } @phdthesis{Colditz2007, author = {Colditz, Rene Roland}, title = {Time Series Generation and Classification of MODIS Data for Land Cover Mapping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25908}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Processes of the Earth's surface occur at different scales of time and intensity. Climate in particular determines the activity and seasonal development of vegetation. These dynamics are predominantly driven by temperature in the humid mid-latitudes and by the availability of water in semi-arid regions. Human activities are a modifying parameter for many ecosystems and can become the prime force in well-developed regions with an intensively managed environment. Accounting for these dynamics, i.e. seasonal dynamics of ecosystems and short- to long-term changes in land-cover composition, requires multiple measurements in time. With respect to the characterization of the Earth surface and its transformation due to global warming and human-induced global change, there is a need for appropriate data and methods to determine the activity of vegetation and the change of land cover. Space-borne remote sensing is capable of monitoring the activity and development of vegetation as well as changes of the land surface. In many instances, satellite images are the only means to comprehensively assess the surface characteristics of large areas. A high temporal frequency of image acquisition, forming a time series of satellite data, can be employed for mapping the development of vegetation in space and time. Time series allow for detecting and assessing changes and multi-year transformation processes of high and low intensity, or even abrupt events such as fire and flooding. The operational processing of satellite data and automated information-extraction techniques are the basis for consistent and continuous long-term product generation. This provides the potential for directly using remote-sensing data and products for analyzing the land surface in relation to global warming and global change, including deforestation and land transformation. This study aims at the development of an advanced approach to time-series generation using data-quality indicators. A second goal focuses on the application of time series for automated land-cover classification and update, using fractional cover estimates to accommodate for the comparatively coarse spatial resolution. Requirements of this study are the robustness and high accuracy of the approaches as well as the full transferability to other regions and datasets. In this respect, the developments of this study form a methodological framework, which can be filled with appropriate modules for a specific sensor and application. In order to attain the first goal, time-series compilation, a stand-alone software application called TiSeG (Time Series Generator) has been developed. TiSeG evaluates the pixel-level quality indicators provided with each MODIS land product. It computes two important data-availability indicators, the number of invalid pixels and the maximum gap length. Both indices are visualized in time and space, indicating the feasibility of temporal interpolation. The level of desired data quality can be modified spatially and temporally to account for distinct environments in a larger study area and for seasonal differences. Pixels regarded as invalid are either masked or interpolated with spatial or temporal techniques.}, subject = {Zeitreihe}, language = {en} } @phdthesis{Wehrmann2007, author = {Wehrmann, Thilo}, title = {Automatisierte Klassifikation von Landnutzung durch Objekterkennung am Beispiel von CORINE Land Cover}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25260}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Informationen {\"u}ber die Landbedeckung und die mit der anthropogenen Komponente verbundenen Landnutzung sind elementare Bestandteile f{\"u}r viele Bereiche der Politik, Wirtschaft und Wissenschaft. Darunter fallen beispielsweise die Strukurentwicklungsprogramme der EU, die Schadensregulierung im Versicherungswesen und die Modellierung von Stoffkreisl{\"a}ufen. CORINE Land Cover (CLC) wurde infolge eines erweiterten Bedarfs an einem europaweit harmonisierten Datensatz der Landoberfl{\"a}che erstellt. Das CORINE Projekt weist f{\"u}r diese Arbeit eine hohe Relevanz durch die regelm{\"a}ßigen Aktualisierungen von 10 Jahren, dem Einsatz der Daten in vielen europ{\"a}ischen und nationalen Institutionen und der guten Dokumentation der CORINE Nomenklatur auf. Die Erstellung der Daten basiert auf der computergest{\"u}tzten manuellen Interpretation, da automatische Verfahren durch die Komplexit{\"a}t der Aufgabenstellung und Thematik nicht in der Lage waren, den menschlichen Interpreten zu ersetzen. Diese Arbeit stellt eine Methodik vor, um CORINE Land Cover aus optischen Fernerkundungsdaten f{\"u}r eine kommende Aktualisierung abzuleiten. Hierzu dienen die Daten von CLC 1990 und der Fernerkundungsdatensatz Image 2000 als Grundlage, sowie die CLC 2000 Klassifikation als Referenz. Die entwickelte und in dem Softwarepaket gnosis implementierte Methodik wendet die objektorientierte Klassifikation in Kombination mit Theorien aus der menschlichen Bildwahrnehmung an. In diesen Theorien wird die Bildwahrnehmung als informationstechnischer Prozess gesehen, der den Klassifikationsprozess in die drei folgenden Subprozesse unterteilt: Bildsegmentierung, Merkmalsgenerierung und Klassenzuweisung. Die Bildsegmentierung generiert aus den untersten Bildprimitiven (Pixeln) bedeutungsvolle Bildsegmente. Diesen Bildsegmenten wird eine Anzahl von bildinvarianten Merkmalen aus den Fernerkundungsdaten f{\"u}r die Bestimmung der CLC Klasse zugewiesen. Dabei liegt die wichtigste Information in der Ableitung der Landbedeckung durch den {\"u}berwachten St{\"u}tzvektor-Klassifikator. Die Landoberfl{\"a}che wird hierzu in zehn Basisklassen untergliedert, um weiteren Merkmalen einen semantischen Unterbau zu geben. Zur Bestimmung der anthropogenen Komponente von ausgew{\"a}hlten Landnutzungsklassen, wie beispielsweise Ackerland und Gr{\"u}nland, wird der ph{\"a}nologische Verlauf der Vegetation durch die Parameter temporale Variabilit{\"a}t und temporale Intensit{\"a}t beschrieben. Neben dem jahreszeitlichen Verlauf der Vegetation k{\"o}nnen Nachbarschaftsbeziehungen untersucht werden, um weitere anthropogene Klassen und heterogen aufgebaute Sammelklassen beschreiben zu k{\"o}nnen. Der Versiegelungsgrad als Beispiel f{\"u}r eine Reihe von unscharfen Merkmalen dient der weiteren Differenzierung der verschiedenen Siedlungsklassen aus CORINE LC. Mit Hilfe dieser Merkmale werden die CLC Klassen in abstrakter Form im Klassenkatalog (a-priori Wissensbasis) als Protoklassen beschrieben. Die eigentliche Objekterkennung basiert auf der Repr{\"a}sentation der CORINE Objekte durch ihre einzelnen Bestandteile und vergleicht die gefundenen Strukturen mit der Wissensbasis. Semantisch homogen aufgebaute Klassen, wie W{\"a}lder und Siedlungen oder Protoklassen mit eindeutigen Merkmalen, beispielsweise zur Bestimmung von Gr{\"u}nland durch die Ph{\"a}nologie, k{\"o}nnen durch den bottom-up Ansatz identifiziert werden. Das {\"u}bergeordnete CLC Objekt kann direkt aus den Bestandteilen zusammengebaut und einer Klasse zugewiesen werden. Semantisch heterogene Klassen, wie zum Beispiel bestimmte Sammelklassen (Komplexe Parzellenstrukur), k{\"o}nnen durch ihre Bestandteile validiert werden, indem die Bestandteile eines existierenden CLC Objektes mit der Wissensbasis auf Konsistenz untersucht werden (top-down Ansatz). Eine a-priori Datengrundlage ist f{\"u}r die Erkennung dieser Klassen essentiell. Die Untersuchung der drei Testgebiete (Frankfurt, Berlin, Oldenburg) zeigte, dass von der CORINE LC Nomenklatur 13 Klassen identifiziert und weiteren 14 Klassen validiert werden k{\"o}nnen. Zehn Klassen k{\"o}nnen durch diese Methodik aufgrund fehlender Merkmale oder Zusatzdaten nicht klassifiziert werden. Die Gesamtgenauigkeit der automatisierten Klassifikation f{\"u}r die Testgebiete betr{\"a}gt zwischen 70\% und 80\% f{\"u}r die umgesetzten Klassen. Betrachtet man davon einzelne Klassen, wie Siedlungs-, Wald- oder Wasserklassen, wird aufgrund der verwendeten Merkmale eine Klassifikationsgenauigkeit von {\"u}ber 90\% erreicht. Ein m{\"o}glicher Einsatz der entwickelten Software gnosis liegt in der Unterst{\"u}tzung einer kommenden CORINE Aktualisierung durch die Prozessierung der identifizierbaren Klassen. Diese CLC Klassen m{\"u}ssen vom Interpreten nicht mehr {\"u}berpr{\"u}ft werden. F{\"u}r bestimmte CLC Klassen aus dem Top-down Ansatz wird der Interpret die letzte Entscheidung aus einer Auswahl von Klassen treffen m{\"u}ssen. Weiterhin k{\"o}nnen die berechneten Merkmale, wie die temporalen Eigenschaften und der Versiegelungsgrad dem Bearbeiter als Entscheidungsgrundlage zur Verf{\"u}gung gestellt werden. Der Einsatz dieser neu entwickelten Methode f{\"u}hrt zu einer Optimierung des bestehenden Aufnahmeverfahrens durch die Integration von semi-automatisierten Prozessen.}, subject = {Optische Fernerkundung}, language = {de} }