@phdthesis{Bacmeister2018, author = {Bacmeister, Lucas}, title = {Effect of Cadherin-13 inactivation on different GABAergic interneuron populations of the mouse hippocampus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Cadherin-13 (CDH13) is an atypical member of the cadherin superfamily, a group of membrane proteins mediating calcium-dependent cellular adhesion. Although CDH13 shows the classical extracellular cadherin structure, the typical transmembrane and cytoplasmic domains are absent. Instead, CDH13 is attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. These findings and many studies from different fields suggest that CDH13 also plays a role as a cellular receptor. Interestingly, many genome-wide association studies (GWAS) have found CDH13 as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and other neurodevelopmental disorders. In previous work from our research group, strong expression of Cdh13 mRNA in interneurons of the hippocampal stratum oriens (SO) was detected. Therefore, double-immunofluorescence studies were used to evaluate the degree of co-expression of CDH13 with seven markers of GABAergic interneuron subtypes. For this purpose, murine brains were double stained against CDH13 and the respective marker and the degree of colocalization in the SO of the hippocampus was assessed. Based on the result of this immunofluorescence study, quantitative differences in interneuron subtypes of the SO between Cdh13 knockout (ko), heterozygote (het) and wildtype (wt) mice were investigated in this dissertation using stereological methods. In addition, genotype- dependent differences in the expression of genes involved in GABAergic and glutamatergic neurotransmission were analyzed by quantitative real-time PCR (qRT-PCR). Primers targeting different GABA receptor subunits, vesicular GABA and glutamate transporter, GABA synthesizing enzymes and their interaction partners were used for this purpose. The results of the stereological quantification of the interneuron subtypes show no significant differences in cell number, cell density or volume of the SO between Cdh13 ko, het and wt mice. On the other hand, qRT-PCR results indicate significant differences in the expression of tropomyosin-related kinase B gene (TrkB), which encodes the receptor of brain-derived neurotrophic factor (BDNF), a regulator of GABAergic neurons. This finding supports a role for CDH13 in the regulation of BDNF signaling in the hippocampus.}, subject = {Cadherine}, language = {en} }