@article{CouchTrofimovMarkovaetal.2016, author = {Couch, Yvonne and Trofimov, Alexander and Markova, Natalyia and Nikolenko, Vladimir and Steinbusch, Harry W. and Chekhonin, Vladimir and Schroeter, Careen and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {108}, doi = {10.1186/s12974-016-0572-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165676}, pages = {1-17}, year = {2016}, abstract = {Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours.}, language = {en} } @article{UeceylerKewenigKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Kewenig, Susanne and Kafke, Waldemar and Kittel-Schneider, Sarah and Sommer, Claudia}, title = {Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls}, doi = {10.1186/s12883-014-0185-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110624}, year = {2014}, abstract = {Background Fibromyalgia syndrome (FMS) is a chronic pain syndrome of unknown etiology. There is increasing evidence for small nerve fiber impairment in a subgroup of patients with FMS. We investigated whether skin cytokine and delta opioid receptor (DOR) gene expression in FMS patients differs from controls as one potential contributor to small nerve fiber sensitization. Methods We investigated skin punch biopsies of 25 FMS patients, ten patients with monopolar depression but no pain, and 35 healthy controls. Biopsies were obtained from the lateral upper thigh and lower calf. Gene expression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF), interleukin (IL)-6, and IL-8 and of the anti-inflammatory cytokine IL-10 was analyzed using quantitative real-time PCR and normalizing data to 18sRNA as housekeeping gene. Additionally, we assessed DOR gene expression. Results All cytokines and DOR were detectable in skin samples of FMS patients, patients with depression, and healthy controls without intergroup difference. Also, gene expression was not different in skin of the upper and lower leg within and between the groups and in FMS patient subgroups. Conclusions Skin cytokine and DOR gene expression does not differ between patients with FMS and controls. Our results do not support a role of the investigated cytokines in sensitization of peripheral nerve fibers as a potential mechanism of small fiber pathology in FMS.}, language = {en} }