@phdthesis{Brandt2004, author = {Brandt, Rainer}, title = {Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15795}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Resorcin-Formaldehyd (RF) Aerogele sind feinstpor{\"o}se organische Stoffe, die {\"u}ber einen katalysierten Sol-Gel-Prozeß und anschließende Trocknung gewonnen werden. In ihrem chemischen Aufbau sind sie den Phenoplasten oder Phenolharzen sehr {\"a}hnlich. Durch Erhitzung auf {\"u}ber 900 K unter Schutzgas lassen sich die organischen Aerogele in elektrisch leitf{\"a}hige Kohlenstoff (C) Aerogele umwandeln. Durch die Menge der w{\"a}ßrigen Verd{\"u}nnung, sowie die Art und Konzentration des eingesetzten Katalysators, l{\"a}ßt sich die Poren- und Partikelgr{\"o}ße sowie die Porosit{\"a}t des im Sol-Gel-Prozeß entstehenden Gels beeinflussen. Aufgrund dieser M{\"o}glichkeit, die Eigenschaften der RF- und C-Aerogele „maßzuschneidern", bieten sich Einsatz- und Optimierungsm{\"o}glichkeiten bei zahlreichen technischen Anwendungen: z.B. bei Isolationsmaterialien, bei der Gasw{\"a}sche und in der Elektrochemie als Elektrodenmaterial f{\"u}r Batterien und Kondensatoren, sowie zur Elektrolyse. Bisherige systematische Untersuchungen unter Variation der Katalysator- und Monomerkonzentration beschr{\"a}nkten sich zumeist auf mit Na2CO3 basisch katalysierte RF- und C-Aerogele. Um metallische Verunreinigungen zu vermeiden, die sich beispielsweise beim Einsatz von C-Aerogelen als Substrat f{\"u}r Halbleiter st{\"o}rend auswirken, wurde in der vorliegenden Arbeit die Wirkung von carbonsauren Katalysatoren, insbesondere Essigs{\"a}ure und vereinzelt auch Ameisens{\"a}ure, auf die Strukturen und Eigenschaften der entstehenden Aerogele systematisch untersucht. Da im Hinblick auf sp{\"a}tere Anwendungen stets eine vereinfachte unterkritische Trocknung mit Austausch des Porenwassers durch Aceton durchgef{\"u}hrt wurde, wurde zum Vergleich auch eine entsprechend getrocknete Probenserie Na2CO3-katalysierter RF- und C-Aerogele hergestellt und untersucht. Strukturelle Untersuchungen mittels REM, R{\"o}ntgenkleinwinkelstreuung (SAXS) und Gassorptionsmessungen ergaben {\"a}hnlich wie bei basisch katalysierten Aerogelen eine Abnahme des Prim{\"a}rpartikeldurchmessers mit steigendem Katalysatorgehalt und best{\"a}tigten damit die Wirksamkeit der protoneninduzierten Katalyse, welche ab etwa pH = 5 einsetzen sollte. Allerdings zeigte sich, daß der essigsaure Katalysator weniger wirksam ist als Na2CO3, so daß zur Herstellung sehr fein strukturierter Aerogele mit geringen Dichten und Strukturen im nm-Bereich extrem hohe Katalysatorkonzentrationen bis in die Gr{\"o}ßenordnung der Stoffmenge des w{\"a}ssrigen L{\"o}sungsmittels n{\"o}tig sind. Wie auch bei basischer Katalyse mit geringer Katalysatorkonzentration, ergaben Variationen der Monomerkonzentration bei den essigsauer katalysierten Proben eine Poren- und Partikelverkleinerung mit zunehmendem Monomergehalt, jedoch mit gr{\"o}ßerer Verteilungsbreite als bei der basischen Katalyse. Bei der Na2CO3-Katalyse mit hohen Katalysatorkonzentrationen und bei unterkritischer Trocknung, kompensierte die mit sinkender Monomerkonzentration stark ansteigende trocknungsbedingte Schrumpfung die zu erwartende Porosit{\"a}tszunahme, so daß sich bei einheitlicher Katalysator- und verschiedenen Monomerkonzentrationen kaum strukturelle und Dichte{\"a}nderungen einstellten. Die schwach essigsauer katalysierten Proben zeigten im Vergleich zu den basischen eine stark ver{\"a}nderte Morphologie. W{\"a}hrend bei letzteren die Kontaktstellen zwischen den Prim{\"a}rpartikeln mit steigendem Partikeldurchmesser immer sp{\"a}rlicher ausfallen, gibt es bei carbonsauer katalysierten RF- und C-Aerogelen auch bei Prim{\"a}rpartikeln im µm-Bereich ein ausgepr{\"a}gtes Halswachstum. Weiterhin haben die µm-großen Prim{\"a}rpartikel basisch katalysierter RF-Aerogele ein clusterartiges Erscheinungsbild, w{\"a}hrend man bei essigsauer katalysierten kugelrunde Prim{\"a}rpartikel findet. Zur Untersuchung des Gelierprozesses wurden einige Proben mit ver{\"a}nderten Gelierzeiten und -temperaturen hergestellt. So konnte festgestellt werden, daß die Verweildauer bei Zimmertemperatur im Zusammenhang mit dem Prim{\"a}rpartikelwachstum steht, w{\"a}hrend bei h{\"o}heren Temperaturen die Vernetzung der Prim{\"a}rpartikeln untereinander gef{\"o}rdert wird. Zu kurze Gelierzeiten und ein Verzicht auf h{\"o}here Temperaturen f{\"u}hrt zu einer sehr starken Schrumpfung bei der unterkritischen Trocknung und damit zu nahezu unpor{\"o}sen harzartigen Materialien.}, subject = {Aerogel}, language = {de} } @phdthesis{Scherdel2009, author = {Scherdel, Christian}, title = {Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Hochpor{\"o}se Kohlenstoffaerogele, die {\"u}ber den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengr{\"u}nden auf g{\"u}nstigere Materialien mit vergleichsweise schlechteren Eigenschaften zur{\"u}ckgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten f{\"u}r Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kosteng{\"u}nstige Edukte und/oder einfache Prozessierung zur{\"u}ckgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgew{\"a}hlt. Die hergestellten Kohlenstoffe wurden haupts{\"a}chlich mit Elektronenmikroskopie, Gassorption und R{\"o}ntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten f{\"u}r das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sph{\"a}rischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine v{\"o}llig neue M{\"o}glichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parameters{\"a}tzen hin vervollst{\"a}ndigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgr{\"o}ße h{\"a}ngt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startl{\"o}sung ab. Die ermittelte untere Grenze der Partikelgr{\"o}ße aus stabilen kolloidalen Dispersionen betr{\"a}gt ca. 30 nm. Gr{\"o}ßere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Absch{\"a}tzung {\"u}ber den Aggregationsgrad der Kohlenstoffpulver wurde durchgef{\"u}hrt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgr{\"o}ße und erzeugt zunehmend nicht-sph{\"a}rische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgr{\"o}ßen stimmen gut {\"u}berein. Bei der Pyrolyse schrumpfen die Partikel auf 84\% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung por{\"o}ser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgef{\"u}hrt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung mit Na2CO3 als basischem Katalysator prinzipiell por{\"o}se Xerogele herstellbar sind; allerdings verhindert eine ungew{\"o}hnliche Gelierkinetik (Flockenbildung statt Sol-Gel-{\"U}bergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gew{\"a}hrleistet ist. Bei Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks w{\"a}hrend der Trocknung. Lediglich bei hohem Formaldehyd{\"u}berschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als L{\"o}sungsmittel. Hier sind hochpor{\"o}se Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und f{\"u}r Xerogele sehr hoher Mesoporosit{\"a}t von bis zu Vmeso = 0,85 cm3/g m{\"o}glich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen {\"u}ber konvektive Trocknung homogene hochpor{\"o}se Xerogel-Formk{\"o}rper auf PF-Basis zu synthetisieren. Aus der {\"U}berwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse {\"u}ber exo- und endotherme Vorg{\"a}nge gewonnen werden. Zudem zeigt die Zeitabh{\"a}ngigkeit der Soltemperatur Gemeinsamkeiten f{\"u}r alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ans{\"a}tze zuverl{\"a}ssig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. f{\"u}r die Kombination mit Partikeltechnologien, m{\"o}glich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollst{\"a}ndige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) f{\"u}r das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein.}, subject = {Sol-Gel-Verfahren}, language = {de} } @phdthesis{Wiener2009, author = {Wiener, Matthias}, title = {Synthese und Charakterisierung Sol-Gel-basierter Kohlenstoff-Materialien f{\"u}r die Hochtemperatur-W{\"a}rmed{\"a}mmung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-44245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Gegenstand der vorliegenden Arbeit ist die Synthese, Charakterisierung und Optimierung von Kohlenstoff-Aerogelen (C-Aerogele) f{\"u}r den Einsatz als Hochtemperaturw{\"a}rmed{\"a}mmung (> 1000°C). C-Aerogele sind offenpor{\"o}se monolithische Festk{\"o}rper, die durch Pyrolyse von organischen Aerogelen entstehen. Die Synthese dieser organischen Vorstufen erfolgt {\"u}ber das Sol-Gel-Verfahren. Zur Charakterisierung der Morphologie wurde die innere Struktur der Aerogele mittels Raster- und Transmissionselektronenmikroskopie, R{\"o}ntgendiffraktometrie (XRD), Raman-Spektroskopie, Stickstoffsorption und R{\"o}ntgenkleinwinkelstreuung (SAXS) untersucht. Die thermischen Eigenschaften der Aerogele wurden mit Hilfe von Laser-Flash Messungen, dynamischer Differenzkalorimetrie (DSC), thermographischen und infrarot-optischen (IR) Messungen quantifiziert. Die innere Struktur von Aerogelen besteht aus einem dreidimensionalen Ger{\"u}st von Prim{\"a}rpartikeln, die w{\"a}hrend der Sol-Gel Synthese ohne jede Ordnung aneinander wachsen. Die zwischen den Partikeln befindlichen Hohlr{\"a}ume bilden die Poren. Die mittlere Partikel- und Porengr{\"o}ße eines Aerogels kann durch die Konzentration der Ausgangsl{\"o}sung und der Katalysatorkonzentration einerseits und durch die Synthesetemperatur und -dauer andererseits eingestellt werden. Der Bereich der mittleren Partikel- und Porengr{\"o}ße, der in dieser Arbeit synthetisierten Aerogele, erstreckt sich von einigen 10 Nanometern bis zu einigen Mikrometern. Die Dichten der Proben wurden im Bereich von 225 kg/m3 bis 635 kg/m3 variiert. Die Auswirkungen der Pyrolysetemperatur auf die Struktur und die thermischen Eigenschaften der C-Aerogele wurden anhand einer Probenserie erstmalig systematisch untersucht. Die Proben wurden dazu bei Temperaturen von 800°C bis 2500°C pyrolysiert bzw. temperaturbehandelt (gegl{\"u}ht). Um die einzelnen Beitr{\"a}ge zur W{\"a}rmeleitf{\"a}higkeit trennen und minimieren zu k{\"o}nnen, wurden die synthetisierten Aerogele thermisch mit mehreren Meßmethoden unter unterschiedlichen Bedingungen charakterisiert. Temperaturabh{\"a}ngige Messungen der spezifischen W{\"a}rmekapazit{\"a}t cp im Bereich von 32°C bis 1500°C ergaben f{\"u}r C-Aerogele verglichen mit den Literaturdaten von Graphit einen {\"a}hnlichen Verlauf. Allerdings steigt cp etwas schneller mit der Temperatur an, was auf eine „weichere" Struktur hindeutet. Die maximale Abweichung betr{\"a}gt etwa 11\%. Messungen an einer Serie morphologisch identischer Aerogelproben, die im Temperaturbereich zwischen 800°C und 2500°C pyrolysiert bzw. gegl{\"u}ht wurden, ergeben eine Zunahme der Festk{\"o}rperw{\"a}rmeleitf{\"a}higkeit mit der Behandlungstemperatur um etwa einen Faktor 8. Stickstoffsorptions-, XRD-, Raman- und SAXS-Messungen an diesen Proben zeigen, dass dieser Effekt wesentlich durch das Wachstum der graphitischen Bereiche (Mikrokristallite) innerhalb der Prim{\"a}rpartikel des Aerogels bestimmt wird. Berechnungen auf Basis von Messungen der Temperaturleitf{\"a}higkeit weisen außerdem auch auf Ver{\"a}nderungen der Mikrokristallite hin. Gasdruckabh{\"a}ngige Messungen der W{\"a}rmeleitf{\"a}higkeit und der Vergleich zwischen Messungen unter Vakuum und unter Normaldruck an verschiedenen Aerogelmorphologien liefern Aussagen {\"u}ber den Gasanteil der W{\"a}rmeleitf{\"a}higkeit. Dabei zeigt sich, dass sich der Gasanteil der W{\"a}rmeleitf{\"a}higkeit in den Poren des Aerogels verglichen mit dem freien Gas durch die geeignete mittlere Porengr{\"o}ße erwartungsgem{\"a}ß erheblich verringern l{\"a}sst. Diese Ergebnisse stimmen in Rahmen der Messunsicherheit mit der Theorie {\"u}berein. Durch infrarot-optische Messungen an C-Aerogelen konnte der Extinktionskoeffizient bestimmt und daraus der entsprechende Beitrag der W{\"a}rmestrahlung zur W{\"a}rmeleitf{\"a}higkeit berechnet werden. Temperaturabh{\"a}ngige Messungen der thermischen Diffusivit{\"a}t erlaubten mit der zur Verf{\"u}gung stehenden Laser-Flash Apparatur die Bestimmung der W{\"a}rmeleitf{\"a}higkeit bis zu Temperaturen von 1500°C. Die Temperaturabh{\"a}ngigkeit der W{\"a}rmeleitf{\"a}higkeit der C-Aerogele zeigt eine Charakteristik, die mit den separat gemessenen bzw. berechneten Beitr{\"a}gen zur W{\"a}rmeleitf{\"a}higkeit und der Theorie im Rahmen der Messunsicherheit gut {\"u}bereinstimmen. Auf der Basis der gewonnenen Messdaten ist es m{\"o}glich, die W{\"a}rmeleitf{\"a}higkeit von Aerogelen f{\"u}r Anwendungen {\"u}ber die maximale Messtemperatur von 1500°C durch Extrapolation vorherzusagen. Die niedrigste W{\"a}rmeleitf{\"a}higkeit der im Rahmen dieser Arbeit synthetisierten C-Aerogele betr{\"a}gt danach etwa 0,17 W/(m•K) bei 2500°C unter Argonatmosph{\"a}re. Kommerziell erh{\"a}ltliche Hochtemperatur-W{\"a}rmed{\"a}mmstoffe, wie z. B. Kohlefaserfilze oder Kohlenstoffsch{\"a}ume weisen W{\"a}rmeleitf{\"a}higkeiten im Bereich von etwa 0,7 bis 0,9 W/(m•K) bei einer Temperatur von 2000°C auf. Die Messungen zeigen, dass die vergleichsweise niedrigen W{\"a}rmeleitf{\"a}higkeiten von C-Aerogelen bei hohen Temperaturen durch die Unterdr{\"u}ckung des Gas- und Strahlungsbeitrags der W{\"a}rmeleitf{\"a}higkeit bedingt sind.}, subject = {Hochtemperatur}, language = {de} } @phdthesis{Swimm2017, author = {Swimm, Katrin}, title = {Experimentelle und theoretische Untersuchungen zur gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Als W{\"a}rmed{\"a}mmstoffe werden {\"u}blicherweise makropor{\"o}se Stoffsysteme wie Sch{\"a}ume, Pul-versch{\"u}ttungen, Faservliese und - wolle eingesetzt. Zus{\"a}tzlich finden mikro- und mesopor{\"o}se D{\"a}mmstoffe wie Aerogele Anwendung. Um effiziente W{\"a}rmed{\"a}mmstoffe entwickeln zu k{\"o}nnen, muss der Gesamtw{\"a}rmetransport in por{\"o}sen Materialien verstanden werden. Die ein-zelnen W{\"a}rmetransport-Mechanismen Festk{\"o}rperw{\"a}rmeleitung, Gasw{\"a}rmeleitung und W{\"a}rme-strahlung k{\"o}nnen zuverl{\"a}ssig analytisch beschrieben werden. Bei manchen por{\"o}sen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen W{\"a}rmetransport-Mechanismen, d.h. die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung, einen hohen Beitrag zur Gesamtw{\"a}rmeleitf{\"a}higkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausf{\"a}llt, kann bisher schwer abgesch{\"a}tzt werden. Um den Kopplungseffekt von Festk{\"o}rper- und Gasw{\"a}rmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen por{\"o}sen Stoffsystemen erforderlich. Zus{\"a}tzlich kann ein zuverl{\"a}ssiges theoretisches Modell dazu beitragen, die mittlere Porengr{\"o}ße von por{\"o}sen Mate-rialien zerst{\"o}rungsfrei anhand von gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeitsmessungen zu bestimmen. Als Modellsystem f{\"u}r die experimentellen Untersuchungen wurde der hochpor{\"o}se Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengr{\"o}ße und Dichte w{\"a}hrend der Synthese gut eingestellt werden k{\"o}nnen. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengr{\"o}ßen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und W{\"a}rme-leitf{\"a}higkeiten experimentell charakterisiert. Die Gesamtw{\"a}rmeleitf{\"a}higkeiten dieser Aerogele wurden f{\"u}r verschiedene Gasatmosph{\"a}ren (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abh{\"a}ngigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierf{\"u}r wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festk{\"o}rper- und Gasw{\"a}r-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten sind um Faktor 1,3 bis 3,3 h{\"o}her als die entsprechenden reinen Gas-w{\"a}rmeleitf{\"a}higkeiten. Die jeweilige H{\"o}he h{\"a}ngt sowohl vom verwendeten Gas (Gasw{\"a}rmeleitf{\"a}higkeit) als auch vom Aerogeltyp (Festk{\"o}rperw{\"a}rmeleitf{\"a}higkeit und Festk{\"o}rperstruktur) ab. Ein stark vernetzter Festk{\"o}rper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festk{\"o}rper. Andererseits wurde die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von Melaminharzschaum - einem flexiblen, offenporigen und hochpor{\"o}sen Material - in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosph{\"a}re bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelw{\"a}rmeleitf{\"a}higkeiten gut erf{\"u}llt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelm{\"a}ßige Struktur von Melaminharzschaum die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung deut-lich beg{\"u}nstigt. Je st{\"a}rker die Melaminharzschaumprobe komprimiert wird, umso st{\"a}rker f{\"a}llt der Kopplungseffekt aus. Bei einer Kompression um 84 \% ist beispielsweise die gemessene gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit bei 0,1 MPa um ca. 17 \% gegen{\"u}ber der effektiven W{\"a}rmeleitf{\"a}higkeit von freiem Stickstoff erh{\"o}ht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen erg{\"a}nzt. Zum einen wurde die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung anhand einer Serienschal-tung der thermischen Widerst{\"a}nde von Festk{\"o}rper- und Gasphase dargestellt, um die Abh{\"a}n-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verh{\"a}ltnissen aus Festk{\"o}rper- und Gasw{\"a}rmeleitf{\"a}higkeit sowie aus den geometrischen Parametern beider Phasen abh{\"a}ngt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgef{\"u}hrt, die f{\"u}r por{\"o}se Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, H{\"a}lse, Windungen und tote Enden). Die simulierten gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten zeigen deutlich, dass die Festk{\"o}rperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung beitr{\"a}gt. Dies korre-liert mit den experimentellen Ergebnissen. Dar{\"u}ber hinaus kann man erkennen, dass die Ge-samtw{\"a}rmeleitf{\"a}higkeit eines schlecht vernetzten por{\"o}sen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals gr{\"o}ßer wird als die eines gut vernetzten Sys-tems mit gleicher Porosit{\"a}t, wo haupts{\"a}chlich paralleler W{\"a}rmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Stoffsystemen theoretisch beschreiben zu k{\"o}nnen. Zun{\"a}chst wurde ein f{\"u}r Kugelsch{\"u}ttungen entwickeltes Modell f{\"u}r Aerogel angepasst, d.h. Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung wurde nur in den L{\"u}cken zwischen zwei benachbarten Partikeln ber{\"u}cksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausf{\"a}llt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zus{\"a}tzlich Kopplung zwischen den einzelnen Partikelstr{\"a}ngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende {\"U}bereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch untersch{\"a}tzt. Das liegt daran, dass die gew{\"a}hlte regelm{\"a}ßige kubische Struktur f{\"u}r Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erw{\"a}hnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgem{\"a}ß k{\"o}nnen jedoch alle f{\"u}r Aerogel erhaltenen gasdruckabh{\"a}ngigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell f{\"u}r reine Gasw{\"a}rmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich h{\"o}her sind als die Literaturwerte (ca. 0,3 auf Metalloberfl{\"a}chen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 f{\"u}r Helium ab-leiten. Dar{\"u}ber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengr{\"o}ßen por{\"o}ser Materialien zuverl{\"a}ssig aus gasdruckabh{\"a}ngig gemessenen W{\"a}rmeleitf{\"a}higkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerst{\"o}rungsfreie Charakterisierungsmethode dar.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {de} }