@phdthesis{Krampert2004, author = {Krampert, Gerhard}, title = {Femtosecond quantum control and adaptive polarization pulse shaping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10304}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Adaptive Femtosekunden-Quantenkontrolle hat sich in den letzten Jahren als eine sehr erfolgreiche Methode in vielen wissenschaftlichen Gebieten wie Physik, Chemie oder Biologie erwiesen. Eine Vielzahl von Quantensystemen und insbesondere Molek{\"u}le, die eine chemische Reaktion durchlaufen, sind durch speziell geformte, Femtosekunden-Laserimpulse kontrolliert worden. Diese Methode erlaubt es, nicht nur das Quantensystem zu beobachten, sondern einen Schritt weiterzugehen und aktive Kontrolle {\"u}ber quantenmechanische Dynamik zu erlangen. In diesem Schema werden Interferenzph{\"a}nomene im Zeit- und Frequenzraum benutzt, um Selektivit{\"a}t zum Beispiel in einer chemischen Reaktion zu erhalten. Die dazu benutzten, speziell geformten Femtosekunden-Laserimpulse waren bislang nur linear polarisiert. Deshalb konnten sie nur die skalaren Eigenschaften der Licht - Materie - Wechselwirkung ausnutzen und haben so den vektoriellen Charakter des elektrischen Dipolmoments \$\vec{\mu}\$ und des elektrischen Lichtfeldes \$\vec{E}(t)\$ vernachl{\"a}ssigt. Im besonderen in der Quantenkontrolle von chemischen Reaktionen ist das untersuchte System, die Molek{\"u}le, dreidimensional und zeigt komplexe raumzeitliche Dynamik. Mit der Hilfe von polarisations-geformten Laserimpulsen ist man jetzt in der Lage dieser Dynamik, sowohl in der Zeit als auch in der r{\"a}umlichen Richtung zu folgen. Deshalb kann nun ein neues Niveau an Kontrolle in quanten-mechanischen Systemen erreicht werden. In dieser Arbeit konnte die Erzeugung von polarisations-geformten Laserimpulsen in einem optischen Aufbau verwirklicht werden. Dieser Aufbau erfordert keine interferometrische Stabilit{\"a}t, da beide Polarisationskomponenten demgleichen Strahlweg folgen. Zwei-Kanal spektrale Interferometrie wurde eingesetzt, um die Laserimpulse experimentell vollst{\"a}ndig zu charakterisieren. Um den zeitabh{\"a}ngigen Polarisationszustand dieser Pulse exakt zu beschreiben, wurde eine mathematische Darstellung entwickelt und angewandt. Die Ver{\"a}nderungen des Polarisationszustandes durch optische Elemente wurde untersucht und einige L{\"o}sungen wurden aufgezeigt, um diese Ver{\"a}nderungen zu minimieren. Der Jones Matrix Formalismus wurde dazu benutzt, alle Verzerrungen des Polarisationszustandes zwischen dem Impulsformer und dem Ort des Experiments zu ber{\"u}cksichtigen. Zugleich k{\"o}nnen die Jones Matrizen zu einer vollst{\"a}ndigen Charakterisierung der erzeugten Laserimpulse verwendet werden. Dabei wurden experimentell kalibrierte Matrizen eingesetzt. Adaptive Polarisations-Impulsformung konnte in einem rein optischen Demonstrationsexperiment gezeigt werden. Dabei wurde die computergesteuerte Polarisationsformung mit einer Lernschleife und einem experimentellen R{\"u}ckkopplungssignal kombiniert. Durch diesen selbstlernenden Algorithmus konnte der ben{\"o}tigte, linear polarisierte Laserimpuls mit m{\"o}glichst kleiner Impulsdauer gefunden werden, der f{\"u}r die effektive Erzeugung der zweiten Harmonischen in einem nichtlinearen optischen Kristall am besten geeignet ist. Durch diese R{\"u}ckkopplungsschleife war es m{\"o}glich auch noch kompliziertere Polarisationsverzerrungen, die durch eine Wellenplatte f{\"u}r eine falsche Wellenl{\"a}nge verursacht wurden, r{\"u}ckg{\"a}ngig zu machen. Die zus{\"a}tzliche Verformung der spektralen Phase durch Materialdispersion in einem 10~cm langen Glasblock konnte ebenfalls automatisch kompensiert werden. Nach diesen optischen Demonstrationsexperimenten wurde ultraschnelle Polarisationsformung angewandt, um ein Quantensystem zu kontrollieren. Die Polarisationsabh{\"a}ngigkeit der Multi-Photonen Ionisation von Kaliumdimeren konnte in einer Anrege-Abtast Messung nachgewiesen werden. Diese Abh{\"a}ngigkeit wurde dann in einem adaptiven Polarisationsformungsexperiment in einer sehr viel allgemeineren Art ausgenutzt. Statt nur einem Anrege- und Abtastlaserimpuls mit jeweils unterschiedlicher Polarisation zu benutzen, wurde der zeitabh{\"a}ngige Polarisationszustand eines geformtem Laserimpulses benutzt, um die Ionisation zu maximieren. Anstelle von einer nur quantitativen Verbesserung konnte eine qualitativ neue Art von Kontrolle {\"u}ber Quantensysteme demonstriert werden. Diese Polarisationskontrolle ist anwendbar selbst bei zuf{\"a}llig ausgerichteten Molek{\"u}len. Durch diese M{\"o}glichkeit, auf Ausrichtung der Molek{\"u}le zu verzichten, konnte mit einem wesentlich vereinfachten experimentellen Aufbau gearbeitet werden. {\"U}ber diese Polarisationskontrollexperimente hinaus wurden auch die dreidimensionalen Aspekte der Dynamik von Molek{\"u}len erforscht und kontrolliert. Die \textit{cis-trans} Photoisomerisierungsreaktion von 3,3\$'\$-Diethyl-2,2\$'\$-Thiacyanin Iodid (NK88) wurde in der fl{\"u}ssigen Phase mit transienter Absorptionsspektroskopie untersucht. Die Isomerisierungsausbeute konnte sowohl erh{\"o}ht als auch erniedrigt werden durch den Einsatz geformter Femtosekunden-Laserimpulse mit einer Zentralwellenl{\"a}nge von 400~nm, die sowohl in spektraler Phase als auch Amplitude moduliert waren. Dieses Experiment zeigt die M{\"o}glichkeit, die koh{\"a}rente Bewegung großer molekularer Gruppen durch Laserimpulse gezielt zu beeinflussen. Diese Modifikation der molekularen Geometrie kann als erster Schritt angesehen werden, kontrollierte Stereochemie zu verwirklichen. Insbesondere da im ersten Teil dieser Arbeit die Kontrolle von Molek{\"u}len mit Polarisations-geformten Impulsen gezeigt werden konnte, ist der Weg geebnet zu einer Umwandlung von einem chiralen Enantiomer in das andere, da theoretische Modelle dieser Umwandlung polarisations-geformte Laserimpulse ben{\"o}tigen. Außer diesen faszinierenden Anwendungen der Polarisationsformung sollte es nun m{\"o}glich sein den Wellenl{\"a}ngenbereich der polarisations-geformten Laserimpulse auszuweiten. Sowohl Erzeugung der zweiten Harmonischen um in den ultravioletten Bereich zu kommen als auch optische Gleichrichtung von {\"a}ußerst kurzen Femtosekunden-Impulsen um den mittleren infrarot Bereich abzudecken sind M{\"o}glichkeiten, den Wellenl{\"a}ngenbereich von polarisations-geformten Laserimpulsen zu erweitern. Mit diesen neuen Wellenl{\"a}ngen tut sich eine Vielzahl an neuen M{\"o}glichkeiten auf, Polarisationsformung f{\"u}r die Kontrolle von quantenmechanischen Systemen einzusetzen.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} }