@phdthesis{BasseLuesebrink2012, author = {Basse-L{\"u}sebrink, Thomas Christian}, title = {Application of 19F MRI for in vivo detection of biological processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Fischer2011, author = {Fischer, Andr{\´e}}, title = {On the Application of Compressed Sensing to Magnetic Resonance Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72496}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {This thesis investigated the potential of Compressed Sensing (CS) applied to Magnetic Resonance Imaging (MRI). CS is a novel image reconstruction method that emerged from the field of information theory. The framework of CS was first published in technical reports in 2004 by Cand{\`e}s and Donoho. Two years later, the theory of CS was published in a conference abstract and two papers. Cand{\`e}s and Donoho proved that it is possible, with overwhelming probability, to reconstruct a noise-free sparse signal from incomplete frequency samples (e.g., Fourier coefficients). Hereby, it is assumed a priori that the desired signal for reconstruction is sparse. A signal is considered "sparse" when the number of non-zero elements is significantly smaller than the number of all elements. Sparsity is the most important foundation of CS. When an ideal noise-free signal with few non-zero elements is given, it should be understandably possible to obtain the relevant information from fewer Fourier coefficients than dictated by the Nyquist-Shannon criterion. The theory of CS is based on noise-free sparse signals. As soon as noise is introduced, no exact sparsity can be specified since all elements have signal intensities that are non-zero. However, with the addition of little or moderate noise, an approximate sparsity that can be exploited using the CS framework will still be given. The ability to reconstruct noisy undersampled sparse MRI data using CS has been extensively demonstrated. Although most MR datasets are not sparse in image space, they can be efficiently sparsified by a sparsifying transform. In this thesis, the data are either sparse in the image domain, after Discrete Gradient transformation, or after subtraction of a temporally averaged dataset from the data to be reconstructed (dynamic imaging). The aim of this thesis was to identify possible applications of CS to MRI. Two different algorithms were considered for reconstructing the undersampled sparse data with the CS concept. The Nonlinear Conjugate Gradient based technique with a relaxed data consistency constraint as suggested by Lustig et al. is termed Relaxed DC method. An alternative represents the Gradient or Steepest Descent algorithm with strict data consistency and is, therefore, termed the Strict DC method. Chapter 3 presents simulations illustrating which of these two reconstruction algorithms is best suited to recover undersampled sparse MR datasets. The results lead to the decision for the Strict DC method as reconstruction technique in this thesis. After these simulations, different applications and extensions of CS are demonstrated. Chapter 4 shows how CS benefits spectroscopic 19F imaging at 7 T, allowing a significant reduction of measurement times during in vivo experiments. Furthermore, it allows highly resolved spectroscopic 3D imaging in acceptable measurement times for in vivo applications. Chapter 5 introduces an extension of the Strict DC method called CS-CC (CS on Combined Coils), which allows efficient processing of sparse undersampled multi-coil data. It takes advantage of a concept named "Joint Sparsity", which exploits the fact that all channels of a coil array detect the same sparse object weighted with the coil sensitivity profiles. The practical use of this new algorithm is demonstrated in dynamic radial cardiac imaging. Accurate reconstructions of cardiac motion in free breathing without ECG triggering were obtained for high undersampling factors. An Iterative GRAPPA algorithm is introduced in Chapter 6 that can recover undersampled data from arbitrary (Non-Cartesian) trajectories and works solely in the Cartesian plane. This characteristic makes the proposed Iterative GRAPPA computationally more efficient than SPIRiT. Iterative GRAPPA was developed in a preceding step to combine parallel imaging with CS. Optimal parameters for Iterative GRAPPA (e.g. number of iterations, GRAPPA kernel size) were determined in phantom experiments and verified by retrospectively undersampling and reconstructing a radial cardiac cine dataset. The synergistic combination of the coil-by-coil Strict DC CS method and Iterative GRAPPA called CS-GRAPPA is presented in Chapter 7. CS-GRAPPA allows accurate reconstruction of undersampled data from even higher acceleration factors than each individual method. It is a formulation equivalent to L1-SPIRiT but computationally more efficient. Additionally, a comparison with CS-CC is given. Interestingly, exploiting joint sparsity in CS-CC is slightly more efficient than the proposed CS-GRAPPA, a hybrid of parallel imaging and CS. The last chapter of this thesis concludes the findings presented in this dissertation. Future applications expected to benefit from CS are discussed and possible synergistic combinations with other existing MR methodologies for accelerated imaging are also contemplated.}, subject = {NMR-Tomographie}, language = {en} } @phdthesis{Gutberlet2011, author = {Gutberlet, Marcel}, title = {K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverh{\"a}ltnis, Abbildungsqualit{\"a}t und Messzeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Magnet-Resonanz (MR)-Bildgebung ist mit vielf{\"a}ltigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch f{\"u}hrt die stark limitierte Messzeit h{\"a}ufig zu einer Einschr{\"a}nkung der erzielbaren r{\"a}umlichen Aufl{\"o}sung und Abdeckung, einer Beschr{\"a}nkung des Signal-zu-Rauschverh{\"a}ltnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. W{\"a}hrend in der PPA die unterschiedlichen Sensitivit{\"a}ten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivit{\"a}t die Bildphase als zus{\"a}tzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverst{\"a}rkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen {\"u}bertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden k{\"o}nnen. Dadurch kann die Rauschverst{\"a}rkung aufgrund der Spulengeometrie ohne zus{\"a}tzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelm{\"a}ßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierf{\"u}r liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings f{\"u}hrt die regelm{\"a}ßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachtr{\"a}gliches Filtern f{\"u}hrt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung erm{\"o}glicht die Reduktion der Signal-Kontamination bei optimalem SNR, f{\"u}hrt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erh{\"o}hung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien f{\"u}r die DW-Bildgebung, die eine Erh{\"o}hung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringf{\"u}gige Reduktion des SNR-Vorteils der DW-Bildgebung gegen{\"u}ber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zus{\"a}tzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution f{\"u}r die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverl{\"a}ngerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung f{\"u}hrt im Fall einer Unterabtastung zu deutlich geringeren, inkoh{\"a}renten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die r{\"a}umliche Aufl{\"o}sung, das SNR und das FOV erh{\"o}ht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspr{\"a}paration (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation w{\"a}hrend der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualit{\"a}t bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16\% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Oechsner2011, author = {Oechsner, Markus}, title = {Morphologische und funktionelle 1H-Magnetresonanztomographie der menschlichen Lunge bei 0.2 und 1.5 Tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Das Ziel dieser Arbeit war es, Methoden und Techniken f{\"u}r die morphologische und funktionelle Bildgebung der menschlichen Lunge mittels Kernspintomographie bei Feldst{\"a}rken von 0,2 Tesla und 1,5 Tesla zu entwickeln und zu optimieren. Bei 0,2 Tesla wurde mittels der gemessenen Relaxationszeiten T1 und T2* eine 2D und eine 3D FLASH Sequenz zur Untersuchung der Lungenmorphologie optimiert. Sauerstoffgest{\"u}tzte Messungen der Relaxationszeiten T1 und T2* sowie eine SpinLabeling Sequenz liefern funktionelle Informationen {\"u}ber den Sauerstofftransfer und die Perfusion der Lungen. Bei 1,5 Tesla wurde die Lungenperfusion mittels MR-Kontrastmittel mit einer 2D und einer 3D Sequenz unter Verwendung der Pr{\"a}bolus Technik quantifiziert. Zudem wurden zwei MR-Navigationstechniken entwickelt, die es erm{\"o}glichen Lungenuntersuchungen unter freier Atmung durchzuf{\"u}hren und aus den Daten artefaktfreie Bilder zu rekonstruieren. Diese Techniken k{\"o}nnen in verschiedenste Sequenzen f{\"u}r die Lungenbildgebung implementiert werden, ohne dass die Messzeit dadurch signifikant verl{\"a}ngert wird.}, subject = {NMR-Bildgebung}, language = {de} } @phdthesis{Moerchel2010, author = {M{\"o}rchel, Philipp}, title = {Funktionelle MR-Tomographie am Tumor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57178}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ein Teil dieser Arbeit bestand in der Entwicklung und Etablierung von Methoden zur nichtinvasiven Erfassung von radiobiologisch relevanten Parametern des Tumormikromilieus mit der Magnet-Resonanz-Tomographie. Dabei wurden die Tumorperfusion und die Reoxygenierung des Tumors bei Beatmung mit Carbogengas als strahlentherapeutisch prognostisch relevante und vor allem auch beeinflussbare Parameter des Tumors untersucht. Die Untersuchungen fanden an einem Xenograft Modell von neun verschiedenen standardisierten humanen Tumorlinien statt, die auf Oberschenkel von M{\"a}usen transplantiert wurden. Als Teil eines multiinstitutionellen Verbundprojekts wurden parallel zu den NMR-Untersuchungen dieselben Tumorlinien mit verschiedenen Methoden der Histologie und Immunhistologie untersucht. Die Erhebung und Sammlung von einer solch großen Anzahl an Tumordaten, die mit den verschiedensten Untersuchungsmethoden an denselben Tumorlinien erfasst wurden bot eine einmalige M{\"o}glichkeit, die einzelnen Tumorparameter miteinander zu korrelieren. Durch die Vielzahl an hier untersuchten Tumorlinien waren aussagekr{\"a}ftige Korrelationen der erfassten Parameter (Perfusion, Reoxygenierung, Laktatverteilung, TCD50, Hypoxie, Blutgef{\"a}ßdichte) m{\"o}glich. Damit konnten die Zusammenh{\"a}nge der einzelnen Parameter des Tumormikromilieus genauer untersucht werden, wodurch das Verst{\"a}ndnis {\"u}ber die Vorg{\"a}nge im Tumor weiter verbessert werden konnte. Mittels quantitativer Messung des oxygenierungssensitiven NMR-Parameters T2* wurde die individuelle Reaktion der Tumoren auf die Atmung von Carbogengas ortsaufgel{\"o}st erfasst. Dabei stellte sich die Reoxygenierung als sehr guter prognostischer Faktor f{\"u}r die Strahlentherapie heraus. Durch die Reoxygenierungsmessung kann somit festgestellt werden, ob ein Patient von einer Beatmung mit Carbogengas w{\"a}hrend der Strahlentherapie profitiert. Zur nichtinvasiven Erfassung der nativen Mikrozirkulation der Tumoren wurden Spin-Labeling-Techniken eingesetzt, die ortsaufgel{\"o}ste Perfusionskarten {\"u}ber den NMR-Relaxationsparameter T1 liefern. Die Tumorperfusion wurde dabei nicht als Absolutwert berechnet, sondern als Relativwert bez{\"u}glich der Muskelperfusion angegeben, um unabh{\"a}ngig vom aktuellen Zustand des Herz-Kreislauf-System des Wirtstieres zu sein. Zwischen den einzelnen Tumorlinien konnten mit dieser Methode signifikante Unterschiede in der Tumormikrozirkulation festgestellt werden. Die Tumorperfusion liegt bei allen untersuchten Linien unter dem Wert der Muskelperfusion. Im zweiten Teil der Arbeit wurde ein Fitalgorithmus entworfen und implementiert, der es erm{\"o}glicht, v{\"o}llig neue Messsequenzen zu entwickeln, die nicht an die Restriktionen der analytischen Fitmethoden gebunden sind. So k{\"o}nnen z.B. die Schaltzeitpunkte der Pulse zur Abtastung einer Relaxationskurve frei gew{\"a}hlt werden. Auch muss das Spinsystem nicht gegen einen Gleichgewichtswert laufen um die Relaxationszeiten bestimmen zu k{\"o}nnen. Dieser Algorithmus wurde in Simulationen mit dem Standardverfahren zur T1-Akquisition verglichen. Dabei erwies sich diese Fitmethode als stabiler als das Standardmessverfahren. Auch an realen Messungen an Phantomen und in vivo liefert der Algorithmus zuverl{\"a}ssig korrekte Werte. Die im ersten Teil dieser Arbeit entwickelten Verfahren zur nichtinvasiven Erfassung strahlentherapeutisch relevanter Parameter sollen letztlich in die klinische Situation auf den Menschen {\"u}bertragen werden. Durch die geringere magnetische Feldst{\"a}rke und das damit verbundene niedrigere SNR der klinischen Magnettomographen muss jedoch die Anzahl der Mittelungen erh{\"o}ht werden, um die gleiche Qualit{\"a}t der Messdaten zu erhalten. Dies f{\"u}hrt aber schnell zu sehr langen Messzeiten, die einem Patienten nicht zugemutet werden k{\"o}nnen. Um die Messzeit zu verk{\"u}rzen wurde eine Messsequenz, aufbauend auf den erarbeiteten Fitalgorithmus entwickelt, die es erm{\"o}glicht, die T1- und T2*-Relaxationszeit simultan und in der Dauer einer herk{\"o}mmlichen T1-Messequenz zu akquirieren. Neben der Messzeitverk{\"u}rzung ist dieses Messverfahren weniger anf{\"a}llig gegen Bewegungsartefakte, die bei der r{\"a}umlichen Korrelation von einzeln nacheinander aufgenommenen T1- und T2*-Relaxationszeitkarten auftreten, da diese in einem Datensatz akquiriert wurden und somit exakt {\"u}bereinander zu liegen kommen.}, subject = {Tumor}, language = {de} } @phdthesis{Herold2010, author = {Herold, Volker}, title = {In vivo MR-Mikroskopie am kardiovaskul{\"a}ren System der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Als Tiermodell ist die Maus aus der pharmazeutischen Grundlagenforschung nicht mehr wegzudenken. Aus diesem Grund nimmt besonders die Verf{\"u}gbarkeit nicht invasiver Diagnoseverfahren f{\"u}r dieses Tiermodell einen sehr hohen Stellenwert ein. Ziel dieser Arbeit war die Entwicklung von in vivo MR-Untersuchungsmethoden zur Charakterisierung des kardiovaskul{\"a}ren Systems der Maus. Neben der morphologischen Bildgebung wurde ein besonderer Schwerpunkt auf die Quantifizierung funktioneller Parameter der arteriellen Gef{\"a}ße wie auch des Herzens gelegt. Durch Implementieren einer PC-Cine-Sequenz mit dreidimensionaler Bewegungskodierung war es m{\"o}glich, die Charakteristik der Bewegung des gesamten Myokards zu untersuchen. Die Aufnahme von Bewegungsvektoren f{\"u}r jeden Bildpunkt und die Bestimmung des Torsionswinkels innerhalb der Messschichten konnte die systolische Kontraktion als dreidimensionale Wringbewegung des Herzens best{\"a}tigen. Um die Qualit{\"a}t der morphologischen Gef{\"a}ßbildgebung zu verbessern, sollte untersucht werden, inwieweit bestehende Verfahren zur Gef{\"a}ßwanddarstellung optimiert werden k{\"o}nnen. Implementieren einer Multi-Schicht-Multi-Spin-Echo-Sequenz an einem 17,6 Tesla Spektrometer erlaubte durch das hohe B0-Feld einen deutlichen Signalgewinn. Erstmals wurde es m{\"o}glich, die gesunde Gef{\"a}ßwand darzustellen und so morphologische Ver{\"a}nderungen in einem m{\"o}glichst fr{\"u}hen Zustand zu untersuchen. Neben der Untersuchung morphologischer Ver{\"a}nderungen sollte vor allem ein Schwerpunkt auf das Studium funktioneller Parameter der Gef{\"a}ßwand gelegt werden. Dazu wurde in einem ersten Schritt mit einem PC-Cine-Verfahren die Umfangsdehnung in ihrem zeitlichen Verlauf ermittelt. Dabei zeigte sich, dass im Laufe einer arteriosklerotischen Plaqueprogression eine {\"A}nderung der Umfangsdehnung vor einer {\"A}nderung morphologischer Parameter beobachtet werden kann. Deshalb war es Ziel, im Verlauf dieser Arbeit weitere Verfahren zur Charakterisierung funktioneller Parameter des Gef{\"a}ßsystems zu entwickeln. Um direkt Elastizit{\"a}tsparameter ermitteln zu k{\"o}nnen, fehlt als Bezugsgr{\"o}ße der arterielle Pulsdruck (AP). Die L{\"o}sung der inkompressiblen Navier-Stokes-Gleichungen unter Anwendung der Lang-Wellen-N{\"a}herung und der N{\"a}herung f{\"u}r große Pulswellengeschwindigkeiten (PWV) erlaubte die Bestimmung der komplexen Impedanz und somit des arteriellen Pulsdrucks in der Frequenzdom{\"a}ne. Dadurch war es m{\"o}glich, den dynamischen Anteil des arteriellen Druckpulses direkt aus einer Messung der Pulswellengeschwindigkeit sowie aus dem Verlauf des Flusspulses zu bestimmen. Zur Ermittlung des AP muss die Pulswellengeschwindigkeit bestimmt werden. F{\"u}r die MR-Bildgebung in murinen Gef{\"a}ßen waren hierzu bisher keine Verfahren verf{\"u}gbar. Da sich die Gef{\"a}ßdehnung m{\"o}glicherweise als Indikator f{\"u}r eine fr{\"u}he Wandver{\"a}nderung bei der Plaqueprogression zeigt, bestand ein großes Interesse in der Untersuchung von spezifischen gef{\"a}ßmechanischen Eigenschaften wie beispielsweise der PWV. Im Rahmen dieser Arbeit konnten zwei MR-Methoden f{\"u}r die nicht invasive Bildgebung in der Maus entwickelt werden, die es erm{\"o}glichten, die lokale und die regionale Pulswellengeschwindigkeit zu bestimmen. Die Messung der lokalen Pulswellengeschwindigkeit beruht dabei auf der zeitaufgel{\"o}sten Bestimmung der Gef{\"a}ßwanddehnung sowie des Blutvolumenflusses. Zur Bestimmung der regionalen Pulswellengeschwindigkeit wurde eine Erweiterung der Zwei-Punkt-Transit-Zeit-Methode verwendet. Durch zeitaufgel{\"o}ste bewegungskodierte Bildgebung entlang der Aorta konnte anhand von 30 St{\"u}tzpunkten die Propagation des arteriellen Flusspulses vermessen werden. Die Messzeit gegen{\"u}ber einer Zwei-Punkt-Methode ließ sich dadurch halbieren. Gleichzeitig bietet die Auswertung von 30 Messpunkten eine gr{\"o}ßere Sicherheit in der Bestimmung der PWV. Beide Methoden wurden an einem elastischen Gef{\"a}ßphantom validiert. In vivo Tierstudien an apoE(-/-)-M{\"a}usen und einer Kontrollgruppe zeigten f{\"u}r beide Methoden eine gute {\"U}bereinstimmung. Dar{\"u}ber hinaus konnte ein Ansteigen der Pulswellengeschwindigkeit in apoE(-/-)-M{\"a}usen durch arteriosklerotische Ver{\"a}nderungen nachgewiesen werden. Zusammenfassend wurden in dieser Arbeit grundlegende Verfahren zur Untersuchung des kardiovaskul{\"a}ren Systems der Maus optimiert und entwickelt. Die Vielseitigkeit der MR-Bildgebung erm{\"o}glichte dabei die Erfassung von morphologischen und funktionellen Parametern. In Kombination k{\"o}nnen die beschriebenen Methoden als hilfreiche Werkzeuge f{\"u}r die pharmakologische Grundlagenforschung zur Charakterisierung von Herz-Kreislauf-Erkankungen in Mausmodellen eingesetzt werden.}, subject = {Maus}, language = {de} } @phdthesis{Mueller2010, author = {M{\"u}ller, Matthias}, title = {Dreidimensionale Konfigurationen von NMR Phased-Array Spulen mit vielen Einzelelementen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52399}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In der vorliegenden Arbeit wurden alternative Phased-Array Konfigurationen untersucht, die eine gleichm{\"a}ßige r{\"A}aumliche Verteilung der Spulensensitivit{\"a}ten f{\"u}r eine 2D parallel beschleunigte NMR-Bildgebung zur Verf{\"u}gung stellen sowie eine h{\"o}here lokale Dichte probenrauschdominierter Einzelspulen als konventionelle Arraygeometrien erm{\"o}glichen. Hierzu wurde zun{\"a}chst eine neuartige 16-Kanal Doppel-Spiral Arraygeometrie einem Birdcage-{\"a}hnlichen Spulenarray mit zwei Ringen aus je acht Spulenelementen gegen{\"u}bergestellt, welches gew{\"o}hnlich in der klinischen Routine f{\"u}r NMR-Untersuchungen am menschlichen Kopf eingesetzt wird. Unter Verwendung analytischer Biot-Savart Berechnungen in der Entwicklungsumgebung Matlab konnten die jeweiligen Kodiereigenschaften sowie das mit den unterschiedlichen Arraykonfigurationen erzielbare intrinsische Signal-Rausch-Verh{\"a}ltnis ermittelt und verglichen werden. Zudem wurde auf gleiche Weise der Einfluss geometrischer Variationen im Aufbau des Doppel-Spiral Volumenarrays auf die intrinsische Isolation zwischen dem inneren, um +pi verdrehten und dem {\"A}ußeren, um -pi verdrehten Einfach-Spiral Spulenarray untersucht und Phased-Array Designs mit 32 unabh{\"A}angigen Empfangselementen evaluiert. Im Rahmen einer experimentellen Evaluierung des Doppel-Spiral Arraykonzepts wurden zuerst einzelne Spulenelemente der unterschiedlichen 16-Kanal Volumenarrays verglichen, bevor eine Doppel-Spiral Phased-Array Prototypenspule aufgebaut wurde. Mit dieser konnten sowohl die vorausgesetzte intrinsische Entkopplung der zwei Einzel-Spiral Spulenarrays als auch die in alle drei Raumrichtungen homogene Verteilung der einzelnen Spulensensitivit{\"a}ten anhand von Experimenten im NMR-System nachgewiesen werden. So war trotz der relativ geringen Anzahl von sechs unabh{\"a}ngigen Einzelkan{\"a}len eine um den Faktor 4 beschleunigte NMR-Untersuchung des menschlichen Kopfes mittels einer 3D MP-RAGE-Bildgebungssequenz m{\"o}glich. Diese hohe Beschleunigung konnte f{\"u}r jede beliebige Orientierung der Kodierrichtungen in gleichermaßen guter Bildqualit{\"a}t erzielt werden und erwies sich somit als unabh{\"a}ngig von der gew{\"u}nschten Positionierung des dreidimensionalen Untersuchungsvolumens. Das auf diese Weise best{\"a}tigte Konzept einer Doppel-Spiral Arraygeometrie stellt allerdings nicht nur eine gleichm{\"a}ßige Sensitivit{\"a}tsvariation entlang aller Raumrichtungen zur Verf{\"u}gung, sondern erm{\"o}glicht auch eine h{\"o}here Dichte probenrauschdominierter Einzelspulen. In einem zweiten Ansatz wurde das Konzept r{\"a}umlich kompakter Quadratur-Arrayelemente untersucht, die aus einer geeigneten geometrischen Kombination zweier Einzelspulen entstehen. Die Evaluierung der Leistungsf{\"a}higkeit einer derartigen Arrayelementkonfiguration erfolgte in diesem Fall durch den Vergleich einer aus vier Quadratur-Arrayelementen aufgebauten 8-Kanal Phased-Array Spule mit einem konventionellen 4-Kanal Spulenarray, welches sich aus vier waagrechten, in Reihen angeordneten Einzelspulen zusammensetzt. Die Kodiereigenschaften der jeweiligen Phased-Array Spulen sowie das zur Verf{\"u}gung stehende intrinsische SNR wurden erneut mit Hilfe von Biot-Savart Simulationen in Matlab ermittelt. Diese zeigten, dass durch eine solche neuartige Elementkonfiguration eine Steigerung des erzielbaren Signal-Rausch-Verh{\"a}ltnisses von nahezu 30\% erreicht werden kann. Zudem konnte eine deutliche Verbesserung der Kodiereigenschaften in Folge einer, bei gleicher Ausdehnung der Arraystruktur, verdoppelten Anzahl an Einzelspulen beobachtet werden. Eine experimentelle Untersuchung erfolgte anhand einer einfachen aus vier Quadratur-Arrayelementen aufgebauten 8-Kanal Phased-Array Spule. Mit dieser wurden im Kernspintomographen NMR-Untersuchungen an Phantomen durchgef{\"u}hrt, die den SNR-Gewinn sowie die signifikante Verbesserung der Kodiereigenschaften durch die Verwendung von Quadratur-Elementen in guter {\"U}bereinstimmung mit den Simulationsergebnissen best{\"a}tigen konnten. Eine derartige Steigerung der Leistungsf{\"a}higkeit eines gew{\"o}hnlichen, flachen Spulenarrays durch das Hinzuf{\"u}gen senkrechter, intrinsisch entkoppelter Spulenelemente zeigt sich auch in den Resultaten coronal und sagittal orientierter NMR-Bildgebungsuntersuchungen der Wirbels{\"a}ule eines gesunden Probanden. Hierbei sind selbst bei Beschleunigungen von einem Faktor 4 keine Artefakte aufgrund einer schlecht konditionierten parallelen Bildrekonstruktion zu beobachten.}, subject = {NMR-Bildgebung}, language = {de} } @phdthesis{Melkus2009, author = {Melkus, Gerd}, title = {Entwicklung und Anwendung spektroskopischer 1H-NMR-Methoden zur in vivo Charakterisierung von Xenograft-Tumormodellen bei 17,6 T}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Der Hauptteil der vorliegenden Arbeit befasste sich mit der Anwendung und der Entwicklung von neuen Methoden der spektroskopischen NMR-Bildgebung zur nicht-invasiven metabolischen Charakterisierung von Xenograft-Tumormodellen bei 17,6 T. In einem weiteren Abschnitt wurden verschiedene etablierte Methoden der lokalisierten NMR-Spektroskopie und der spektroskopischen Bildgebung genutzt, um den Metabolismus von H{\"u}lsenfr{\"u}chten (Pisum sativum) am Hochfeld zu untersuchen. Im experimentellen Teil der Arbeit wurde der selektive Mehrquantenfilter Sel-MQC zur Laktatbestimmung in neun verschiedenen Xenograft-Tumormodellen verwendet. Diese Werte wurden mit Ergebnissen aus der Biolumineszenz und mit der Tumorkontrolldosis 50 (TCD50) der Tumorlinien korreliert. Der Sel-MQC-Editierungsfilter stellte sich als {\"a}ußerst robuste Methode heraus das Laktat im NMR-Spektrum eindeutig von koresonanten Lipiden des Unterhautfettgewebes bzw. von tumoreigenen Lipiden zu trennen. Der Vergleich mit dem durch die Biolumineszenz bestimmten Laktat zeigte durchweg niedrigere Werte in den NMR-Messungen. Der Hauptgrund f{\"u}r diesen Unterschied besteht wahrscheinlich darin, dass mit der NMR-Methode nur das freie Laktat bestimmt werden kann, wohingegen die Biolumineszenz das gesamte Laktat erfasst. Das mit der NMR detektierbare freie Laktat zeigte allerdings eine m{\"a}ßige Korrelation zur TCD50 (R = 0,46), wodurch dieser Parameter nur als bedingt prognostisch wertvoll f{\"u}r die Strahlentherapie von Tumoren angesehen werden kann. Der Informationsgehalt pro Messzeit und damit die Effizienz der Standard-Sel-MQC-Editierungssequenz konnte durch verschiedene methodische Erweiterungen gesteigert werden. Eine zus{\"a}tzliche spektral selektive Wasserunterdr{\"u}ckung und ein weiteres Aufnahmefenster erm{\"o}glichte neben der Messung des Laktatsignals die Akquisition s{\"a}mtlicher Resonanzen des 1H-Spektrums mit einer kurzen Echozeit. Somit konnten zus{\"a}tzlich das Gesamtcholin und die Methyl- und Metylengruppen der Lipide aufgenommen werden. Neben dem Laktat erwies sich das Verh{\"a}ltnis von Lipid-Methylensignal zu Gesamtcholin (L1/tCho) als aussagekr{\"a}ftigster Parameter, um zwei untersuchte Xenograft-Tumormodelle zu unter-scheiden. Die spektroskopische Sel-MQC-Bildgebungssequenz, deren k-Raumantastung in der Regel mit reiner Phasenkodierung durchgef{\"u}hrt wird, konnte durch eine Verwendung eines Lesegradienten beschleunigt werden. Die bei dem Sel-MQC-Filter auftretenden typischen Artefakte im Bereich der Wasserresonanz sind durch zwei Aufnahmen nach dem Dixon-Prinzip und einem anschließenden Additionsverfahren unterdr{\"u}ckbar. Bei einer ausreichenden Aufnahmezeit, die abh{\"a}ngig vom T2* der zu editierenden Resonanz ist, kann mit der Methode eine nahezu {\"a}hnlich hohe Sensitivit{\"a}t wie mit dem rein phasenkodierten Experiment erreicht werden. Eine in die Sequenz eingef{\"u}gte frequenzselektive Refokussierung der Laktat-CH3-Gruppe erm{\"o}glichte die Aufnahme mehrerer Laktatechos ohne eine Phasenmodulation durch die J-Kopplung im Signal zu erhalten. Die nach einer Anregung erhaltenen Echos k{\"o}nnen zur weiteren Beschleunigung der Sequenz oder zur Bestimmung der apparenten transversalen Relaxationszeit des editieren Metaboliten verwendet werden. Das Grundprinzip des Sel-MQC-Filters konnte in einem umgekehrten Verfahren dazu verwendet werden mobile Lipide im Tumor ohne das koresonante Laktatsignal zu detektieren, um damit die Lipiddetektion zu spezifizieren. Da zur Unterdr{\"u}ckung des Metabolitensignals nur die J-Kopplung ausgenutzt wird, m{\"u}ssen weder Relaxationszeiten noch Diffusionskoeffizienten f{\"u}r die Editierung bekannt sein. Die Aufnahme des Lipidsignals wird dabei in einer Pr{\"a}paration erreicht, was die Sequenz robust gegen{\"u}ber Bewegungsartefakten macht. Die Methode kann beispielsweise mit Diffusionsgradienten kombiniert werden, um den apparenten Diffusionskoeffizienten mobiler Lipide im Tumorgewebe zu bestimmen. Das hohe Magnetfeld von 17,6 T und damit die vergr{\"o}ßerte chemische Verschiebung eigneten sich insbesonders dazu spektroskopische Messungen an Pflanzensystemen durchzuf{\"u}hren. Im letzten Teil der Arbeit wurden unterschiedliche lokalisierte 1D-, 2D-NMR-Methoden und die spektroskopische Bildgebung verwendet, um den Wildtyp und eine Mutantenform des Pisum sativum nicht-invasiv metabolisch zu untersuchen. Die mit der NMR bestimmten Metabolitenkonzentrationen im Endosperm des Pisum sativum korrelierten mit Resultaten aus biochemischen Auswertungen. Weiterhin konnten mit den NMR-Methoden auch Ergebnisse gewonnen werden, die mit biochemischen und histologischen Verfahren nicht erreicht werden k{\"o}nnen. Die Untersuchung von Pflanzen - oder wie hier von Pflanzensamen - mit spektroskopischen NMR-Methoden bieten zus{\"a}tzliche und f{\"u}r bestimmte Fragestellungen auch einzigartige Ans{\"a}tze deren Metabolismus in vivo zu untersuchen.}, subject = {Tumor}, language = {de} } @phdthesis{Ziener2008, author = {Ziener, Christian H.}, title = {Suszeptibilit{\"a}tseffekte in der Kernspinresonanzbildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35425}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das Dephasierungsverhalten und die daraus resultierende Relaxation der Magnetisierung sind Grundlage aller auf der Kernspinresonanz basierenden bildgebenden Verfahren. Das erhaltene Signalder pr{\"a}zedierenden Protonen wird wesentlich von den Eigenschaften des untersuchten Gewebes bestimmt. Insbesondere die durch magnetisierte Stoffe wie z. B. desoxygeniertes Blut (BOLD-Effekt) oder magnetische Nanopartikel erzeugten Suszeptibilit{\"a}tsspr{\"u}nge gewinnen zunehmend Bedeutung in der biomedizinischen Bildgebung. In der vorliegenden Arbeit wurden die Einfl{\"u}sse von Feldinhomogenit{\"a}ten auf das NMR-Signal untersucht.}, subject = {Magnetische Kernresonanz}, language = {de} } @phdthesis{Purea2008, author = {Purea, Edmund Armin}, title = {New Methods and Applications in Nuclear Magnetic Resonance Microscopy using small RF Coils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31066}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Nuclear magnetic resonance (NMR) imaging is a well-established imaging technique. If the achieved spatial resolution is below 100 um, it is usually denoted as magnetic resonance microscopy (MRM). The spatial resolution limit is on the order of a few um. As a downside, high resolution imaging is usually time-consuming and technological requirements are very sumptuous. Furthermore, miniaturization of the radiofrequency (RF) coil leading to a so-called microcoil is necessary; it also brings along detrimental effects. Therefore, there is a high potential for optimizing present MRM methods. Hence it is the aim of this work to improve and further develop present methods in MRM with focus on the RF coil and to apply those methods on new biological applications. All experiments were conducted on a Bruker 17.6 T system with a maximum gradient strength of 1 T/m and four RF receiver channels. Minimizing the RF coil dimensions, leads to increased artefacts due to differences in magnetic susceptibility of the coil wire and surrounding air. Susceptibility matching by immersing the coil in FC-43 is the most common approach that fulfills the requirements of most applications. However, hardly any alternatives are known for cases where usage of FC-43 is not feasible due to its specific disadvantages. Two alternative substances (bromotricholoromethane and Fomblin Y25) were presented and their usability was checked by susceptibility determination and demonstration experiments after shimming under practical conditions. In a typical MRM microcoil experiment, the sample volume is significantly smaller than the maximum volume usable for imaging. This mismatch has been optimized in order to increase the experiment efficiency by increasing the number of probe coils and samples used. A four-channel probehead consisting of four individual solenoid coils suited for cellular imaging of Xenopus laevis oocytes was designed, allowing simultaneous acquisition from four samples. All coils were well isolated and allowed quantitative image acquisition with the same spatial resolution as in single coil operation. This method has also been applied in other studies for increased efficiency: using X. laevis oocytes as a single cell model, the effect of chemical fixation on intracellular NMR relaxation times T1 and T2 and on diffusion was studied for the first time. Significant reduction of relaxation times was found in all cell compartments; after reimmersion in buffer, values return close to the initial values, but there were small but statistically significant differences due to residual formaldehyde. Embryos of the same species have been studied morphologically in different developmental stages. Wild type embryos were compared to embryos that had experienced variations in protein levels of chromosomal proteins HMGN and H1A. Significant differences were found between wild type and HMGN-modified embryos, while no difference was observed between wild type and H1-modified embryos. These results were concordant with results obtained from light microscopy and histology. The technique of molecular imaging was also performed on X. laevis embryos. Commercially available antibodies coupled to ultrasmall superparamagnetic iron oxide (USPIO) dextrane coated particles (MACS) served as a specific probe detectable by MRM, the aim being the detection of tissue specific contrast variations. Initially, the relaxivity of MACS was studied and compared to Resovist and VSOP particles. The iron concentration was determined quantitatively by using a general theoretical approach and results were compared to values obtained from mass spectroscopy. After incubation with MACS antibodies, intraembryonal relaxation times were determined in different regions of the embryo. These values allowed determination of local iron oxide particle concentrations, and specific binding could be distinguished from unspecific binding. Although applications in this work were focused on X. laevis oocytes and embryos, 3D-imaging on a beewolf head was also carried out in order to visualize the postpharyngeal gland. Additionally, an isolated beewolf antenna was imaged with a spatial resolution of (8 um)^3 for depiction of the antennal glands by using a microcoil that was specially designed for this sample. The experiments carried out in this work show that commercially available MRM systems can be significantly optimized by using small sample-adapted RF coils and by parallel operation of multiple coils, by which the sample throughput and thus time-efficiency is increased. With this optimized setup, practical use was demonstrated in a number of new biological applications.}, subject = {Magnetische Resonanz}, language = {en} }