@phdthesis{Kortmann2022, author = {Kortmann, Mareike}, title = {Biodiversity and recreation - Optimizing tourism and forest management in forests affected by bark beetles}, doi = {10.25972/OPUS-24031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as 'catastrophe' diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out.}, subject = {Borkenk{\"a}fer}, language = {en} } @article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @article{UhlerHaaseHoffmannetal.2022, author = {Uhler, Johannes and Haase, Peter and Hoffmann, Lara and Hothorn, Torsten and Schmidl, J{\"u}rgen and Stoll, Stefan and Welti, Ellen A. R. and Buse, J{\"o}rn and M{\"u}ller, J{\"o}rg}, title = {A comparison of different Malaise trap types}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293694}, pages = {666 -- 672}, year = {2022}, abstract = {Recent reports on insect decline have highlighted the need for long-term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20\%-55\%, not strictly following trap size but varying with trap type. Total species richness was 20\%-38\% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground-dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies.}, language = {en} } @phdthesis{Vogel2022, author = {Vogel, Cassandra Ezra}, title = {The effects of land-use and agroecological practices on biodiversity and ecosystem services in tropical smallholder farms}, doi = {10.25972/OPUS-29066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290661}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Biodiversity is in rapid decline worldwide. These declines are more pronounced in areas that are currently biodiversity rich, but economically poor - essentially describing many tropical regions in the Global South where landscapes are dominated by smallholder agriculture. Agriculture is an important driver of biodiversity decline, through habitat destruction and unsustainable practices. Ironically, agriculture itself is dependent on a range of ecosystem services, such as pollination and pest control, provided by biodiversity. Biodiversity on fields and the delivery of ecosystem services to crops is often closely tied to the composition of the surrounding landscape - complex landscapes with a higher proportion of (semi-)natural habitats tend to support a high abundances and biodiversity of pollinators and natural enemies that are beneficial to crop production. However, past landscape scale studies have focused primarily on industrialized agricultural landscapes in the Global North, and context dependent differences between regions and agricultural systems are understudied. Smallholder agriculture supports 2 billion people worldwide and contributes to over half the world's food supply. Yet smallholders, particularly in sub-Saharan Africa, are underrepresented in research investigating the consequences of landscape change and agricultural practices. Where research in smallholder agriculture is conducted, the focus is often on commodity crops, such as cacao, and less on crops that are directly consumed by smallholder households, though the loss of services to these crops could potentially impact the most vulnerable farmers the hardest. Agroecology - a holistic and nature-based approach to agriculture, provides an alternative to unsustainable input-intensive agriculture. Agroecology has been found to benefit smallholders through improved agronomical and food-security outcomes. Co-benefits of agroecological practices with biodiversity and ecosystem services are assumed, but not often empirically tested. In addition, the local and landscape effects on biodiversity and ecosystem services are more commonly studied in isolation, but their potentially interactive effects are so far little explored. Our study region in northern Malawi exemplifies many challenges experienced by smallholder farmers throughout sub-Saharan Africa and more generally in the Global South. Malawi is located in a global biodiversity hotspot, but biodiversity is threatened by rapid habitat loss and a push for input-intensive agriculture by government and other stakeholders. In contrast, agroecology has been effectively promoted and implemented in the study region. We investigated how land-use differences and the agroecological practices affects biodiversity and ecosystem services of multiple taxa in a maize-bean intercropping system (Chapter 2), and pollination of pumpkin (Chapter 3) and pigeon pea (Chapter 4). Additionally, the effects of local and landscape scale shrub- to farmland habitat conversion was investigated on butterfly communities, as well as the potential for agroecology to mitigate these effects (Chapter 5).}, language = {en} } @article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{RedlichZhangBenjaminetal.2022, author = {Redlich, Sarah and Zhang, Jie and Benjamin, Caryl and Dhillon, Maninder Singh and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Hovestadt, Thomas and Kollmann, Johannes and Koellner, Thomas and K{\"u}bert-Flock, Carina and Kunstmann, Harald and Menzel, Annette and Moning, Christoph and Peters, Wibke and Riebl, Rebekka and Rummler, Thomas and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {2}, doi = {10.1111/2041-210X.13759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258270}, pages = {514-527}, year = {2022}, abstract = {Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981-2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6-9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5-10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.}, language = {en} } @article{StormsJakharMitesseretal.2022, author = {Storms, Mona and Jakhar, Aryan and Mitesser, Oliver and Jechow, Andreas and H{\"o}lker, Franz and Degen, Tobias and Hovestadt, Thomas and Degen, Jacqueline}, title = {The rising moon promotes mate finding in moths}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, doi = {10.1038/s42003-022-03331-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301365}, year = {2022}, abstract = {To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths.}, language = {en} } @phdthesis{Mayr2021, author = {Mayr, Antonia Veronika}, title = {Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species}, doi = {10.25972/OPUS-18292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 - General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are considered to be important factors in determining insect diversity. Yet, the relative importance of each of these factors is unknown. Using trap nests along the elevational gradient of Mt. Kilimanjaro, we tried to disentangle drivers of species richness at different trophic levels. Temperature was the major driver of species richness across trophic levels, with increasing importance of food resources at higher trophic levels in natural antagonists. Parasitism rate was both related to temperature and trophic level, indicating that the relative importance of bottom-up and top-down forces might shift with climate change. Chapter 3 - Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera Natural populations fluctuate with the availability of resources, presence of natural enemies and climatic variations. But tropical mountain seasonality is not yet well investigated. We investigated seasonal patterns in nest-building activity, functional traits and ecological rates in three different insect groups at lower and higher elevations separately. Insects were caught with trap nests which were checked monthly during a 17 months period that included three dry and three rainy seasons. Insects were grouped according to their functional guilds. All groups showed strong seasonality in nest-building activity which was higher and more synchronised among groups at lower elevations. Seasonality in nest building activity of caterpillar-hunting and spider-hunting wasps was linked to climate seasonality while in bees it was strongly linked to the availability of flowers, as well as for the survival rate and sex ratio of bees. Finding adaptations to environmental seasonality might imply that further changes in climatic seasonality by climate change could have an influence on life-history traits of tropical mountain species. Chapter 4 - Cryptic species and hidden ecological interactions of halictine bees along an elevational Gradient Strong environmental gradients such as those occurring along mountain slopes are challenging for species. In this context, hidden adaptations or interactions have rarely been considered. We used bees of the genus Lasioglossum as model organisms because Lasioglossum is the only bee genus occurring with a distribution across the entire elevational gradient at Mt. Kilimanjaro. We asked if and how (a) cuticular hydrocarbons (CHC), which act as a desiccation barrier, change in composition and chain length along with changes in temperature and humidity (b), Lasioglossum bees change their pollen diet with changing resource availability, (c) gut microbiota change with pollen diet and climatic conditions, and surface microbiota change with CHC and climatic conditions, respectively, and if changes are rather influenced by turnover in Lasioglossum species along the elevational gradient. We found physiological adaptations with climate in CHC as well as changes in communities with regard to pollen diet and microbiota, which also correlated with each other. These results suggest that complex interactions and feedbacks among abiotic and biotic conditions determine the species composition in a community. Chapter 5 - General Discussion Abiotic and biotic factors drove species diversity, traits and interactions and they worked differently depending on the functional group that has been studied, and whether spatial or temporal units were considered. It is therefore likely, that in the light of global change, different species, traits and interactions will be affected differently. Furthermore, increasing land use intensity could have additional or interacting effects with climate change on biodiversity, even though the potential land-use effects at Mt. Kilimanjaro are still low and not impairing cavity-nesting Hymenoptera so far. Further studies should address species networks which might reveal more sensitive changes. For that purpose, trap nests provide a good model system to investigate effects of global change on multiple trophic levels and may also reveal direct effects of climate change on entire life-history traits when established under different microclimatic conditions. The non-uniform effects of abiotic and biotic conditions on multiple aspects of biodiversity revealed with this study also highlight that evaluating different aspects of biodiversity can give a more comprehensive picture than single observations.}, subject = {land use}, language = {en} } @article{SeiboldHothornGossneretal.2021, author = {Seibold, Sebastian and Hothorn, Torsten and Gossner, Martin M. and Simons, Nadja K. and Bl{\"u}thgen, Nico and M{\"u}ller, J{\"o}rg and Ambarl{\i}, Didem and Ammer, Christian and Bauhus, J{\"u}rgen and Fischer, Markus and Habel, Jan C. and Penone, Caterina and Schall, Peter and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228309}, pages = {144 -- 148}, year = {2021}, abstract = {Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land-use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1-18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter- and longer-term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671-674) based on a 10-year multi-site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include 'year' as random effect, as suggested by Daskalova et al. (2021), fail to detect non-linear trends and assume that consecutive years are independent samples which is questionable for insect time-series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short-term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions.}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} }