@article{WaeldchenLehmannKleinetal.2015, author = {W{\"a}ldchen, Sina and Lehmann, Julian and Klein, Teresa and van de Linde, Sebastian and Sauer, Markus}, title = {Light-induced cell damage in live-cell super-resolution microscopy}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {15348}, doi = {10.1038/srep15348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145207}, year = {2015}, abstract = {Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of similar to 1 kW cm\(^{-2}\) at 640 nm for several minutes, the maximum dose at 405 nm is only similar to 50 J cm\(^{-2}\), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.}, language = {en} } @article{KleinStieglerKleinetal.2014, author = {Klein, Barett Anthony and Stiegler, Martin and Klein, Arno and Tautz, J{\"u}rgen}, title = {Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0102316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115857}, pages = {e102316}, year = {2014}, abstract = {Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.}, language = {en} } @article{AsoHerbOguetaetal.2012, author = {Aso, Yoshinori and Herb, Andrea and Ogueta, Maite and Siwanowicz, Igor and Templier, Thomas and Friedrich, Anja B. and Ito, Kei and Scholz, Henrike and Tanimoto, Hiromu}, title = {Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {7}, doi = {10.1371/journal.pgen.1002768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130631}, pages = {e1002768}, year = {2012}, abstract = {Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.}, language = {en} } @article{PoethkePfenningHovestadt2007, author = {Poethke, Hans J. and Pfenning, Brenda and Hovestadt, Thomas}, title = {The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48225}, year = {2007}, abstract = {Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30\% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch.}, language = {en} } @phdthesis{Thom2002, author = {Thom, Corinna}, title = {Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony adjusts its daily foraging effort by changing the number of its nectar foragers rather than their activity. I tested whether volatiles produced by a foraging colony activated nectar foragers of a non-foraging colony by connecting with a glass tube two colonies. Each colony had access to a different green house. In 50\% of all experiments, volatile substances from the foraging colony stimulated nectar foragers of the non-foraging colony to fly to an empty feeder. The results of this study show that honey bees can produce a chemical signal or cue that activates nectar foragers. However, more experiments are needed to establish the significance of the activating volatiles for the foraging communication system. The brief piping signal of nectar foragers inhibits forager recruitment by stopping waggle dances (Nieh 1993, Kirchner 1993). However, I observed that many piping signals (approximately 43\%) were produced off the dance floor, a restricted area in the hive where most waggle dances are performed. If the inhibition of waggle dances would be the only function of the brief piping signal, tremble dancers should produce piping signals mainly on the dance floor, where the probability to encounter waggle dancers is highest. To therefore investigate the piping signal in more detail, I experimentally established the foraging context of the brief piping signal, characterized its acoustic properties, and documented for the first time the unique behavior of piping nectar foragers by observing foragers throughout their entire stay in the hive. Piping nectar foragers usually began to tremble dance immediately upon their return into the hive, spent more time in the hive, more time dancing, had longer unloading latencies, and were the only foragers that sometimes unloaded their nectar directly into cells instead of giving it to a nectar receiver bee. Most of the brief piping signals (approximately 99\%) were produced by tremble dancers, yet not all tremble dancers (approximately 48\%) piped. This suggests that piping and tremble dancing have related, but not identical functions in the foraging system. Thus, the brief piping signals may not only inhibit forager recruitment, but have an additional function both on and off the dance floor. In particular, the piping signal might function 1. to stop the recruitment of additional nectar foragers, and 2. as a modulatory signal to alter the response threshold of signal receivers to the tremble dance. The observation that piping tremble dancers often did not experience long unloading delays before they started to dance gave rise to a question. A forager's unloading delay provides reliable information about the relative work capacities of nectar foragers and nectar receivers, because each returning forager unloads her nectar to a nectar receiver before she takes off for the next foraging trip. Queuing delays for either foragers or receivers lower foraging efficiency and can be eliminated by recruiting workers to the group in shortage. Short unloading delays indicate to the nectar forager a shortage of foragers and stimulate waggle dancing which recruits nectar foragers. Long unloading delays indicate a shortage of nectar receivers and stimulate tremble dancing which recruits nectar receivers (Seeley 1992, Seeley et al. 1996). Because the short unloading delays of piping tremble dancers indicated that tremble dancing can be elicited by other factors than long unloading delays, I tested whether a hive-external stimulus, the density of foragers at the food source, stimulated tremble dancing directly. The experiments show that tremble dancing can be caused directly by a high density of foragers at the food source and suggest that tremble dancing can be elicited by a decrease of foraging efficiency either inside (e.g. shortage of receiver bees) or outside (e.g. difficulty of loading nectar) the hive. Tremble dancing as a reaction to hive-external stimuli seems to occur under natural conditions and can thus be expected to have some adaptive significance. The results imply that if the hive-external factors that elicit tremble dancing do not indicate a shortage of nectar receiver bees in the hive, the function of the tremble dance may not be restricted to the recruitment of additional nectar receivers, but might be the inhibition or re-organization of nectar foraging.}, subject = {Bienen }, language = {en} }