@phdthesis{Thiess2021, author = {Thiess, Torsten}, title = {Synthese und Reaktivit{\"a}t von 1,4-Diaza-2,3-diborininen}, doi = {10.25972/OPUS-21459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214598}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In der vorliegenden Arbeit wurde die Synthese, Funktionalisierung und Reaktivit{\"a}t von 1,4,2,3-Diazadiborininen untersucht. Zu Beginn sollten Bis(dimethylamino)-substituierte Diazadiborinine mit unterschiedlichen Resten an den Stickstoffatomen dargestellt werden, deren weitere Funktionalisierung sp{\"a}ter im Fokus stand. Die Synthese erfolgte durch Reduktion von 1,4-Diazabutadienen mit elementarem Lithium und anschließender Salzeliminierungsreaktion mit B2(NMe2)2Cl2. Dadurch ließen sich die monocyclischen vier N,N'-Diaryl-substituierten Diazadiborinine sowie ein Alkyl-substituiertes Diazadiborinin darstellen. Durch etablierte Methoden der Diboran(4)-Chemie wurden diese in ihre Halogenderivate (Cl, Br, I) {\"u}berf{\"u}hrt. Aus diesen konnten drei 2,3-Diazido-1,4,2,3-diazadiborinine durch Umsetzung mit TMSN3 aus den Dihalogenderivaten dargestellt werden. Diese stellen hierbei die ersten isolierten Diboran(4)azidverbindugen dar. Ebenso gelang die Synthese eines bicyclischen Naphthalinisosters, welches erneut erfolgreich in seine Halogenderivate sowie das Diazdidoderivat {\"u}berf{\"u}hrt werden konnte. Einen Einblick in den Mechanismus der 1,4,2,3-Diazadiborininbildung erm{\"o}glichte die Isolierung eines Diazadiboretidinintermediats, welches durch doppelte Salzeliminierung entsteht. Dieses erwies sich jedoch als metastabil und lagerte zum Sechsring Diazadiborinin um. Quantenchemische Berechnungen unterstutzten die experimentellen Befunde. {\"U}ber Kommutierungsreaktionen konnte eine Vielzahl an B,B'-unsymmetrisch substituierten Diazadiborininen dargestellt und isoliert werden, wobei je nach verwendeten Startmaterialien entweder Gleichgewichtsreaktionen oder quantitative Umsetzungen beobachtet wurden. Ebenso wurde die Reaktivit{\"a}t der neuartigen Diazidodiborane(4) gegen{\"u}ber Lewis-Basen untersucht. Sowohl das monocyclische Diazadiborinin, als auch das Benzodiazadiborinin konnten mit NHC-Basen zu den f{\"u}nf verschiedenen Addukten umgesetzt werden. Unter thermischer Belastung wurde bei den monocyclischen Addukten eine Staudinger-artige Reaktion beobachtet, die unter Freisetzung von N2 zur Bildung von Guanadin-substituierten Diborane(4) f{\"u}hrte. Die Benzodiazadiborininaddukte zeigten jedoch eine g{\"a}nzlich andere Reaktivit{\"a}t. Hier fand eine Ringverkleinerungsreaktion unter Bildung von Diazaborolen statt, welche unter Wanderung einer Azidfunktion auf das NHC-stabilisierte Boratom gebildet wurden. Auf diese Weise konnten drei 1,1-Diamino-2,2-diazidodiborane(5) isoliert werden. W{\"a}hrend bei der Umsetzung des Naphtalenderivats mit cAAC keine selektive Reaktion beobachtet wurde, reagierte das monocyclische Diazadiborinin mit zwei {\"A}quivalenten cAAC. Hier bedingte das erste Carbon eine Staudinger-artige Reaktion, die unter Distickstofffreisetzung zu einem Formamidin f{\"u}hrte. Die zweite Azidgruppe wurde am \$\gamma\$-Stickstoffatom von einem weiteren {\"A}quivalent cAAC koordiniert. In weiteren Reaktivit{\"a}tsstudien wurde die Generierung von transienten Iminoboranen aus Diazidodiazadiborininen untersucht. Die Diazide zeigten bei Temperaturen von {\"u}ber 150 °C ein sehr selektives Reaktionsverhalten und gingen unter Freisetzung von Distickstoff zu 1,3,2,4-Diazadiboretidin {\"u}ber, wobei dies {\"u}ber die Dimerisierung eines intermedi{\"a}r gebildeten siebengliedrigen, endocyclischen Iminoborans verlief. Der Mechanismus zur Bildung der transienten Iminoborane wurde anhand zweier m{\"o}glicher Bildungswege mit quantenchemischen Methoden untersucht. Im letzten Kapitel wurde die Reaktivit{\"a}t des Dihydrodiazadiborinins gegen{\"u}ber NHC- und cAAC-Lewis-Basen untersucht. Die Umsetzung mit cAAC f{\"u}hrte zu einer B-H-Bindungsaktivierung durch das Carbenkohlenstoffatom, die vermutlich {\"u}ber eine Adduktspezies verl{\"a}uft. Mit dem ges{\"a}ttigten NHC SIMes wurde ebenfalls keine Adduktbildung beobachtet, auch wenn ein derartiges Intermediat vermutlich durchlaufen wird. Als Produkt der Umsetzung wurde indes ein bicyclisches Molek{\"u}l identifiziert, welches durch doppelte Ringerweiterung gebildet wurde. Mit unges{\"a}ttigten NHCs wurden drei Addukte isoliert, welche jedoch nur metastabil waren und beim Erw{\"a}rmen in bicyclische Verbindungen umlagerten. Die Umlagerungsprodukte konnten weiterhin durch Koordination eines weiteren {\"A}quivalents IMe an die B-H-Funktionalit{\"a}t erneut zu Addukten umgesetzt werden. Die Bildung der zweier bicyclischer Verbindungen wurde ebenfalls mit quantenchemischen Methoden untersucht, wobei ein vierstufiger Prozess durchlaufen wird. Nach der Bildung des NHC-Addukts erfolgt die {\"U}bertragung eines Hydrids auf das Carbenkohlenstoffatom. Durch Insertion eines Boratoms in die NC-Bindung des Carbenrings wird eine Spiroverbindung gebildet und im letzten Schritt folgt die Spaltung der BB-Bindung durch Insertion des ehemaligen Carbenkohlenstoffatoms, was zur Bildung der Bicyclen f{\"u}hrt.}, subject = {Heterocyclische Verbindungen}, language = {de} }