@phdthesis{Bauer2011, author = {Bauer, Florian}, title = {Untersuchungen zur Diborierung unges{\"a}ttigter Systeme mit [2]Borametalloarenophanen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57209}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Rahmen dieser Arbeit wurde die {\"U}bergangsmetall-katalysierte Diborierung verschiedener unges{\"a}ttigter Substrate untersucht. Die Diborierung von Dialkinen erm{\"o}glichte die Synthese einer Reihe neuer Verbindungen, welche sich in drei Gruppen einteilen lassen: i) Einkernige [4]Diboradicarbaferrocenophane, die zus{\"a}tzlich entweder direkt oder {\"u}ber einen Spacer eine CC Dreifachbindung tragen; ii) zweikernige Komplexe, bei denen das [4]Ferrocenophanfragment {\"u}ber die zweite CC Dreifachbindung an ein niedervalentes Platinfragment koordiniert ist und iii) zweikernige Bis [4]diboradicarbaferrocenophane durch die Diborierung beider Dreifachbindungen des Dialkins. Von den vier Vertreter von Gruppe i) ist bei zweien die zweite CC Dreifachbindung direkt an die Bis(boryl)alkeneinheit gebunden, w{\"a}hrend bei den anderen eine Spacergruppe vorhanden ist. Die Darstellung der Komplexe kann entweder durch katalytische Diborierung der Dialkine durch [Fe{C5H4B(NMe2)}2] oder durch direkte Umsetzung mit [Fe{C5H4B(NMe2)}2Pt(PEt3)2] erfolgen. Hingegen f{\"u}hrt die Umsetzung von [Fe{C5H4B(NMe2)}2Pt(PEt3)2] mit {\"a}quimolaren Mengen Dialkin zur Bildung der zweiten Verbindungen von Gruppe ii). Hier ist die zweite CC Dreifachbindung an ein [Pt(PEt3)2] Fragment koordiniert, wodurch ein Platinalkinkomplex entsteht. Unter den Produkten der Gruppe iii) sind zuerst die Komplexe zu nennen, die zwei Ferrocenophangruppen tragen. Die so synthetisierten Produkte weisen jeweils zwei chirale Ebenen auf und wurden deshalb als Diastereomerenpaare erhalten. Es konnte gezeigt werden, dass die einzelnen Diastereomere durch Erhitzen in L{\"o}sung ineinander umgewandelt werden k{\"o}nnen. Mittels DFT-Rechnungen konnte zudem ein plausibler Mechanismus aufgedeckt werden. Neben den Bis [4]ferrocenophanen wurde ein Komplex dargestellt, in dem ein [4]Diboradicarbaferrocenophanfragment {\"u}ber eine Spacerfunktion an einen entsprechenden von Bis(benzol)chrom abgeleiteten Metalloarenophanrest gebunden ist. Weiterhin wurden durch Umsetzung von [Pt(PEt3)3] mit den entsprechenden Dialkinen in unterschiedlicher St{\"o}chiometrie jeweils drei einkernige bzw. zweikernige Platinalkinkomplexe sowie ein Platinalkenkomplex synthetisiert. Die IR-spektroskopischen Untersuchungen legen die Formulierung als Platinacyclopropene bzw. Platinacyclopropane nahe. Durch die Diborierung von Isocyaniden konnte unter bemerkenswert milden Reaktionsbedingungen eine Reihe von chiralen, einkernigen Bis(boryl)iminokomplexen dargestellt werden. Die Synthese verl{\"a}uft entweder durch direkte Umsetzung der Diborane(4) mit den entsprechenden Isocyaniden oder, mit verl{\"a}ngerten Reaktionszeiten auch durch Diborierung der Isocyanide mittels der entsprechenden [3]Metalloarenophane. Durch Umsetzung von [2]Borametalloarenophanen mit Diisocyaniden konnten zudem verschiedene zwei- bzw. dreikernige Bis(boryl)iminokomplexe zug{\"a}nglich gemacht werden. Die hierzu ausgew{\"a}hlten Diisocyanide tragen wiederum eine Spacereinheit zwischen den beiden NC Funktionalit{\"a}ten. Genau wie bei den Reaktionen von Dialkinen treten auch hier die Produkte als Paare von Diastereomeren auf. Ein weiteres Projekt besch{\"a}ftigte sich mit der oxidativen Addition von [Fe{C5H4B(NMe2)}2] an verschiedene {\"U}bergangsmetallkomplexe. Die Umsetzungen f{\"u}hrten allerdings in keinem Fall zur Bildung der gew{\"u}nschten Bis(boryl)metallkomplexe. Bei verschiedenen Platinkomplexen kann jedoch die Bildung eines einheitlichen Produkts beobachtet werden. Es wird deshalb in {\"U}bereinstimmung mit den spektroskopischen Daten vermutet, dass es sich dabei um ein [2.2]Diboraferrocenophan handelt. Eine saubere Isolierung des Produkts gelingt jedoch nicht, weshalb der strukturelle Nachweis bislang nicht gef{\"u}hrt werden kann. Abschließend konnte dabei gezeigt werden, dass mehrt{\"a}giges Erhitzen von [Fe{C5H4B(NMe2)}2Pt(PEt3)2] in L{\"o}sung hochselektiv zur Bildung des mutmaßlichen [2.2]Diboraferrocenophans f{\"u}hrt. Weiterhin ist auch die Umsetzung von [Fe{C5H4B(NMe2)}2] mit katalytischen Mengen [Pt{P(CH2Cy)3}2] erfolgreich, f{\"u}hrte jedoch nicht zu einer Isolierung des Produkts in Substanz.}, subject = {Ferrocen}, language = {de} } @phdthesis{Bissinger2013, author = {Bissinger, Philipp}, title = {Synthese, Struktur und Reaktivit{\"a}t Basen-stabilisierter Borane und Diborene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79144}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Umsetzungen N-heterocyclischer Carbene mit Boranen f{\"u}hren zur Bildung von „Lewis-S{\"a}ure-Base-Addukten". In Abh{\"a}ngigkeit des Substitutionsmusters der eingesetzten Borane bzw. Carbene eignen sich die erhaltenen Addukte als Ausgangsverbindungen zur Realisierung verschiedener Strukturmotive. Mit geeigneten {\"U}bergangsmetallfragmenten gelingt die Darstellung von sigma-Boran-Komplexen bzw. Basen-stabilisierter Boryl-Komplexe, welche mittels spektroskopischer Methoden sowohl im Festk{\"o}rper, als auch in L{\"o}sung untersucht wurden. Ebenfalls gelingt die Synthese Basen-stabilisierter Borirane und einer tetraedrischen Borid-Spezies. Zudem wird ein selektiver Zugang zu Basen-stabilisierten Diborenen entwickelt, wobei deren Bindungssituation und Reaktivit{\"a}t im Detail diskutiert wird. So kann das B=B-Fragment in polymere Spezies eingebunden werden oder als Ligand an {\"U}bergangsmetalle koordinieren.}, subject = {Borane}, language = {de} } @phdthesis{Brenner2012, author = {Brenner, Peter Burkhard}, title = {Boryl- und Borylenplatinkomplexe : Darstellung und Reaktivit{\"a}t unges{\"a}ttigter Komplexe; Reaktivit{\"a}tsstudien zur Metall-vermittelten Kn{\"u}pfung von Bor-Kohlenstoff- und Bor-Bor-Bindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Reaktion der Verbindungen trans-[Pt{B(Br)(R)}Br(PCy3)2] mit Lewis-aciden Bromboranen BBr2(R) liefert Bromo-verbr{\"u}ckte, zweikernige Borylkomplexe. Sowie die jeweiligen Phosphan-Boran-Addukte Cy3P-BBr2(R). Die Reaktion von [Pt{B(X)(R)}(-X)(PCy3)]2 mit 4-Picolin erfolgt unter Koordination der Base am Boratom unter formaler Halogenidverschiebung zur Entstehung der ersten neutralen, basenstabilisierten Borylenkomplexe cis-[Pt{B(R)(4-Pic)}X2(PCy3)]. Durch oxidative Addition der B-Cl-Bindung von BCl3 an [Pt(PCy3)2] ist trans-[Pt(BCl2)Cl(PCy3)2] zug{\"a}nglich, welches durch Reaktion mit Na[BArf4] zum kationischen Borylkomplex trans-[Pt(BCl2)(PCy3)2][BArf4] umgesetzt wird. Durch die strukturelle Charakterisierung von trans-[Pt{B(Br)(Fc)}Br(PiPr3)2] und trans-[Pt{B(Br)(Fc)}(PiPr3)2][BArf4] kann gezeigt werden, dass der Borylligand {B(Br)(Fc)} durch das {Pt(PiPr3)2}-Fragment in einem neutralen sowie in einem kationischen, T-f{\"o}rmigen Komplex stabilisiert werden kann. Die Reaktion von trans-[Pt{B(Br)(NMe2)}(PCy3)2][BArf4] mit Acetonitril f{\"u}hrt zur Bildung des kationischen Acetonitrilkomplexes trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2][BArf4]. Durch die Reaktion von trans-[Pt{B(Br)(NMe2)}Br(PCy3)2] mit Na2[B12Cl12] im Verh{\"a}ltnis 2:1 und Zugabe von Acetonitril wird trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2]2[B12Cl12] als erste kationische, metallorganische Verbindung, die durch [B12Cl12]2- stabilisiert wird, erhalten. Die Abstraktion des Bromoliganden aus trans-[Pt{B(4-Pic)(NMe2)}Br(PCy3)2][BArf4] mittels Na[BArf4] f{\"u}hrt zur Bildung des ersten dikationischen 14-Elektronenkomplexes trans- [Pt{B(NMe2)(4-Pic)}(PCy3)2][BArf4]2 mit einer freien Koordinationsstelle. Die Reaktion von trans-[Pt(BCat')Br(PCy3)2] mit MeLi liefert trans-[Pt(BCat')Me(PCy3)2]. Die Anwesenheit von Alkinen oder Bisphosphanen (P-P) beschleunigt die Reduktive Eliminierung von CatBMe. Die Reaktion von trans-[Pt(BCat')Me(PCy3)2] mit Cat2B2 f{\"u}hrt zu einem Reaktionsgemisch, welches auf einen komplexen Reaktionsverlauf schließen l{\"a}sst. Diese Prozesse verlaufen assoziativ. Es werden zwei m{\"o}gliche Reaktionsmechanismen vorgeschlagen. Dies sind I) die reduktive Eliminierungsreaktion aus einem anf{\"a}nglich gebildeten, hexakoordinierten Platinkomplex und II) eine -Bindungsmetathese der B-B- mit der Pt-C- Bindung. Die oxidative Addition von Cat2B2 an [Pt(PCy3)3] erfolgt reversibel. Die strukturellen Parameter des Bisborylkomplexes im Kristall deuten auf einen sterisch {\"u}berfrachteten cis-Bis(boryl)komplex mit relativ schwach gebundenen Borylliganden hin. Das neuartige Phosphan P(CH2Cy)3, welches sich durch einen flexiblen sterischen Anspruch auszeichnet, wird als Ligand in niedervalenten Phosphankomplexen eingesetzt. Der Platinkomplex reagiert mit 1,3,5-(C6H3)(BBr2)3 selektiv zu 1,3,5-trans-[Pt(BBr)Br{P(CH2Cy)3}2]3(C6H3), dem ersten Tris(boryl)komplex. Die Bis- und Tris(phosphan)rhodium(I)-Komplexe, welche im {\"U}berschuss mit Phosphan im Gleichgewicht vorliegen, reagieren mit CatBH zu trans-[Rh(BCat)ClH{P(CH2Cy)3}2]. [Pt(PCy3)2] reagiert mit CatBH in einer cis-selektiv verlaufenden Reaktion. Die Reaktion von [Pt{P(CH2Cy)3}2] mit CatBH im {\"U}berschuss f{\"u}hrt zur Bildung von trans-[Pt(BCat)H{P(CH2Cy)3}2], cis-[Pt(BCat)2{P(CH2Cy)2}2] und H2 im Gleichgewicht. Gem{\"a}ß quantenchemischen Berechnungen erfolgt die oxidative Addition der B-H-Bindung an [Pt(PR3)2] (R=Me, Cy, CH2Cy) ausgehend von einem -Pr{\"a}kursorkomplex. Durch die oxidative Addition der B-H-Bindung von CatBH an cis-[Pt(BCat)H(PR3)2] wird ein hyperkoordiniertes Platin(IV)-Intermediat gebildet, aus welchem das thermodynamisch stabilere trans-konfigurierte Isomer gebildet werden kann. Dieses Platin(IV)-Intermediat stellt die Schl{\"u}sselverbindung f{\"u}r die nachfolgende Dehydrokupplung dar. Durch einen {\"U}bergangszustand, in welchem Diwasserstoff abgespalten werden kann, wird ein cis-Bis(boryl)platinkomplex gebildet. Durch eine -Bindungsmetathese mit der B-H-Bindung von CatBH kann die B-B-Bindung gekn{\"u}pft und Diboran(4) abgespalten werden. Das metallhaltige Produkt dieser Reaktion ist identisch mit dem trans-(Boryl)(hydrido)platinkomplex. Durch die Flexibilit{\"a}t der P(CH2Cy)3-Liganden werden durchweg Intermediate berechnet, welche geringere Deformationskr{\"a}fte aufweisen als mit den rigiden PCy3-Liganden.}, subject = {Borylgruppe}, language = {de} } @phdthesis{Brueckner2021, author = {Br{\"u}ckner, Tobias Walter}, title = {Lewisbasenstabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivit{\"a}tsstudien}, doi = {10.25972/OPUS-21347}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213479}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Diese Dissertation befasst sich mit der Darstellung und Reaktivit{\"a}t von Lewisbasenstabilisierten Bor-Bor-Mehrfachbindungssystemen. Besonderes Augenmerk lag hierbei auf der Aktivierung von Element-Wasserstoff-Bindungen von Boranen, Aminen, Silanen und Phosphanen durch NHC-stabilisierte Diborine. Des Weiteren wurde die Aktivierung von Bor-Bor-, sowie Phosphor-Phosphor-Einfachbindungen untersucht. Zus{\"a}tzlich wurde die Reaktivit{\"a}t gegen{\"u}ber Carbenen und aromatischen Stickstoffbasen n{\"a}her beleuchtet.}, subject = {Diborine}, language = {de} } @phdthesis{Burzler2007, author = {Burzler, Michael}, title = {Synthese, Struktur und Reaktivit{\"a}t von Borylenkomplexen des Mangans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Im Rahmen dieser Doktorarbeit sind neue Borylenkomplexe synthetisiert worden, die am Boratom keinen pi-Donor tragen und eine umfangreiche Chemie erm{\"o}glichen. Zum Beispiel wurde eine [2+2]-Cycloaddition und eine Metathesereaktion eines Borylenkomplexes beobachtet. Ebenfalls wurde ein stabiles Bornucleophil erhalten.}, subject = {Bor}, language = {de} } @article{BelangerChabotBraunschweig2019, author = {B{\´e}langer-Chabot, Guillaume and Braunschweig, Holger}, title = {Hexahalogendiborat-Dianionen: Eine neue Klasse bin{\"a}rer Borhalogenide}, series = {Angewandte Chemie}, volume = {131}, journal = {Angewandte Chemie}, number = {40}, doi = {10.1002/ange.201906666}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212605}, pages = {14408-14412}, year = {2019}, abstract = {Die elektronenpr{\"a}zisen bin{\"a}ren Borsubhalogenide [B\(_2\)X\(_6\)]\(^{2-}\) (X=F, Br, I) wurden synthetisiert und strukturell im Festk{\"o}rper untersucht. Zudem konnte die vermutete Existenz von [B\(_2\)Cl\(_6\)]\(^{2-}\) mittels R{\"o}ntgendiffraktometrie nachgewiesen werden. Diese Dianionen sind isoelektronisch zu den Hexahalogeniden des Ethans und k{\"o}nnen als Homologe des Tetrahalogenborat-Anions BX\(_4\)\(^-\) betrachtet werden. Dar{\"u}ber hinaus geh{\"o}ren sie zu den seltenen Beispielen von elektronenpr{\"a}zisen bin{\"a}ren Borverbindungen (B\(_2\)X\(_4\), BX\(_3\), [BX\(_4\)]\(^-\)).}, language = {de} } @phdthesis{Boehnke2019, author = {B{\"o}hnke, Julian}, title = {Reaktivit{\"a}t niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme}, doi = {10.25972/OPUS-16333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, vielf{\"a}ltige Reaktivit{\"a}ten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. H{\"a}ufig begr{\"u}ndet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungew{\"o}hnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-F{\"a}higkeiten und der hohen π-Acidit{\"a}t der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivit{\"a}tsstudien mit den entsprechenden NHC-stabilisierten Bor-Bor-Mehrfachbindungssystemen wider. Zun{\"a}chst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgef{\"u}hrt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungsl{\"a}ngen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zug{\"a}nglichkeit f{\"u}r die Reaktivit{\"a}tsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollst{\"a}ndige, oxidative Spaltung der Bor-Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten gr{\"o}ßeren Teilbereich dieser Arbeit dar. Durch die enorme π-R{\"u}ckbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Im weiteren Verlauf konnte ein Mechanismus f{\"u}r die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) - einer Spezies, die f{\"u}r die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde - unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei {\"A}quivalenten tert-Butylisocyanid f{\"u}hrte zur Bildung eines Bis(boraketenimins). {\"A}hnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-R{\"u}ckbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Die Thermolyse der Verbindung f{\"u}hrte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: W{\"a}hrend ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung f{\"u}hrt und potentiell hochinteressante Reaktivit{\"a}ten erm{\"o}glicht. So f{\"u}hrte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B-B-Bindung und Insertion eines µ2-gebundenen CO-Molek{\"u}ls in die BB-Einheit. Die Tatsache, dass ein {\"a}hnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten F{\"a}higkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivit{\"a}t des Diborakumulens 7 gegen{\"u}ber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das R{\"u}hren von 7 unter einer H2-Atmosph{\"a}re f{\"u}hrte zur 1,2-Addition des H2-Molek{\"u}ls an die B2-Einheit unter Ausbildung eines trans-st{\"a}ndigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidit{\"a}t der CAAC-Liganden {\"u}ber das gesamte C-B-B-C-Grundger{\"u}st delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgef{\"u}hrt, um eine Hydridabstraktion aus dem L{\"o}sungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielf{\"a}ltige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu beg{\"u}nstigen, f{\"u}hrte zur Ausbildung verschiedener Tautomere. W{\"a}hrend das Produkt aus der formalen Addition und Insertion von zwei CO-Molek{\"u}len (24) lediglich unter CO-Atmosph{\"a}re stabil war, konnte unter Argonatmosph{\"a}re ein Tautomerengemisch von 25 mit intakter Bor-Bor-Bindung und einer Boraketeneinheit isoliert werden. W{\"a}hrend dieser Prozess vollst{\"a}ndig reversibel war, f{\"u}hrte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Dar{\"u}ber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollst{\"a}ndigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosph{\"a}ren, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen erm{\"o}glichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen f{\"u}hrte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchg{\"a}ngig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark {\"a}hnelte. Eine weitere Umsetzung von 22 mit zwei {\"A}quivalenten Diphenyldisulfid f{\"u}hrte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivit{\"a}tsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molek{\"u}len f{\"u}hrte zur Ausbildung einer Spezies mit einer Boraketenfunktionalit{\"a}t und einem Bors{\"a}ureesterderivat (30). F{\"u}r die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion {\"u}ber eine ungew{\"o}hnliche, sukzessive [2+1]-Cycloaddition an die koordinativ unges{\"a}ttigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton f{\"u}hrte zur Ausbildung eines f{\"u}nfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbr{\"u}ckter Bor-Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Br{\"u}ckner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsf{\"u}hrung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. W{\"a}hrend das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, f{\"u}hrten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. F{\"u}r 31 konnte dar{\"u}ber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander {\"u}berf{\"u}hrt werden konnte. Die Reaktion des Diborakumulens mit M{\"u}nzmetallhalogeniden ergab f{\"u}r die Umsetzung von 7 mit drei {\"A}quivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-f{\"o}rmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem {\"A}quivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilit{\"a}t, sodass sich nach einem Zeitraum von 24 Stunden bei erh{\"o}hter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-S{\"a}ure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren {\"A}quivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zun{\"a}chst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor-Bor-Bindung besitzt. Die Reaktion von 34 gegen{\"u}ber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments f{\"u}hrt hier zu einer erheblichen π-R{\"u}ckbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen f{\"u}r die CO-Schwingung in einer derartigen Funktionalit{\"a}t aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff f{\"u}hrte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor-Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verh{\"a}ltnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor-Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundger{\"u}st, C-C- und B-C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols {\"a}hneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der {\"U}bergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor-Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen erm{\"o}glichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an {\"U}bergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 m{\"o}glich war. Die Ausbildung eines quinoiden Systems f{\"u}hrte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 {\"A}quivalenten Zirkoniumtetrachlorid f{\"u}hrte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang dar{\"u}ber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen f{\"u}r [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche R{\"u}ckbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant h{\"o}here Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als {\"u}beraus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivit{\"a}tsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit besch{\"a}ftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid f{\"u}hrte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor-Bor-Mehrfachbindung. W{\"a}hrend die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor-Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben f{\"u}r 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten dar{\"u}ber hinaus zeigen, dass die Singulett-Zust{\"a}nde der synthetisierten Diborene stabiler als die Triplett-Zust{\"a}nde sind und dass die Triplett-Zust{\"a}nde der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zust{\"a}nde sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verst{\"a}ndnis dieser Verbindungsklasse.}, subject = {Bor}, language = {de} } @phdthesis{Claes2016, author = {Claes, Christina}, title = {Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ein Teil der hier vorliegenden Arbeit besch{\"a}ftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollst{\"a}ndig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festk{\"o}rper stark {\"a}hneln. Die vergleichsweise lange B-CCarben-Bindungen (98: 1.621(3) {\AA}; 99: 1.619(5) {\AA}; 100: 1.631(3) {\AA}) konnten hierbei als Beleg f{\"u}r den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B-P-Bindungen (112: 1.987(2) {\AA}; 113: 1.980(2) {\AA}; 114: 1.960(3) {\AA}) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich k{\"u}rzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizit{\"a}t von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zur{\"u}ckgef{\"u}hrt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen F{\"a}llen unselektiv und f{\"u}hrte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] {\"u}berf{\"u}hrt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B-CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molek{\"u}lstrukturen im Festk{\"o}rper von 101, 102 und 103 unterscheiden sich nur geringf{\"u}gig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilit{\"a}t sogar gegen{\"u}ber Luft und Wasser auf. W{\"a}hrend gegen{\"u}ber [Pt(PCy3)2] keine Reaktivit{\"a}t beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollst{\"a}ndige C-H-Bindungsaktivierung am NHC-R{\"u}ckgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B-CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signals{\"a}tze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals best{\"a}tigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festk{\"o}rper konnte durch eine Einkristallr{\"o}ntgenstrukturanalyse belegt werden, wobei die geringe Qualit{\"a}t des Datensatzes keine Strukturdiskussion zul{\"a}sst. Erwartungsgem{\"a}ß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C-H-Einheiten im NHC-R{\"u}ckgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewiss{\"a}uren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. W{\"a}hrend die Umsetzungen mit Lewiss{\"a}uren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des L{\"o}sungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren L{\"o}sungsmittel f{\"u}hrten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molek{\"u}lstruktur im Festk{\"o}rper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivit{\"a}t neuer Phosphan-stabilisierter Diborene. Hierbei konnte zun{\"a}chst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei -40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unl{\"o}slichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivit{\"a}t oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molek{\"u}lstrukturen von 122, 123, 126 und 127 im Festk{\"o}rper konnten die Abst{\"a}nde der B=B-Doppelbindungen (1.55(2)-1.593(2) {\AA}) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1-B1-B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die F{\"u}nfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgr{\"o}ße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde f{\"u}r dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems h{\"o}herer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Aufl{\"o}sung bzw. Signal{\"u}berlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B-B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollst{\"a}ndig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zun{\"a}chst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. W{\"a}hrend mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des L{\"o}sungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase erm{\"o}glichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) ben{\"o}tigt dieser Ansatz jedoch deutlich l{\"a}ngere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 \% statt 54 \%). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 {\"u}berf{\"u}hrt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer L{\"o}sung von 122 erhalten werden. Die Identit{\"a}t von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erkl{\"a}rt werden. Zus{\"a}tzlich konnten zwei weitere m{\"o}gliche Zersetzungsprodukte durch Einkristallr{\"o}ntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur f{\"u}r 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) m{\"o}glich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei gef{\"u}hrt werden. Diese ungew{\"o}hnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als m{\"o}glicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist {\"u}ber die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = -20.62; NICS(1) = -6.27; NICS(1)` = -14.59) und den unterschiedlich langen B-C-Bindungen des Vierrings in der Molek{\"u}lstruktur im Festk{\"o}rper (B-C1: 1.465(4) bzw. 1.486(4) {\AA}; B-C3: 1.666(4) bzw. 1.630(4) {\AA}) weiter best{\"a}tigt wurde. Eine Einkristallr{\"o}ntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) {\AA} im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 {\"u}berf{\"u}hrt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in L{\"o}sung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molek{\"u}lstruktur im Festk{\"o}rper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 f{\"u}hrte (B-B: 1.633(3) {\AA}). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in L{\"o}sung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) f{\"u}r ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch {\"a}ußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu f{\"u}hrte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molek{\"u}lstrukturen im Festk{\"o}rper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B-B: 1.626(3) {\AA} (167); 1.628(3) {\AA} (168); 1.633(4) {\AA} (63)). Beide Spezies zeigen hierbei erwartungsgem{\"a}ß ein interessantes photophysikalisches Verhalten, wobei dieses l{\"o}sungsmittelunabh{\"a}ngig ist und Fluoreszenzprozesse f{\"u}r die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivit{\"a}tsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden.}, subject = {Bor}, language = {de} } @phdthesis{Damme2013, author = {Damme, Alexander}, title = {Reaktivit{\"a}t von Diboranen(4) gegen{\"u}ber metallischen und nicht-metallischen Lewis-Basen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77750}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Reaktivit{\"a}t von Diboranen(4) (1,2-Dihalogendiboranen(4)) gegen{\"u}ber von metallischen und nicht-metallischen Lewis-Basen wurde untersucht. Die Ergebnisse zeigen, dass die oxidative Addition einer Bor-Halogen-Bindung an ein Platin(0)-Komplex selektiv verl{\"a}uft und in trans-Diboran(4)yl-Bisphosphan-Platin-Komplexen resultiert. Bei Verwendung von 1,2-Dihalogen-1,2-diaryldiboranen(4) findet sich in den korrespondierenden trans-Diboran(4)yl-Platin-Komplexen eine dative Bindung des Platin-Zentralatoms zum entfernten zweiten Bor-Atom, welche sowohl in L{\"o}sung als auch im Festk{\"o}rper beobachtet wird. Die erhaltenen trans-Diboran(4)yl-Komplexe wurden auf ihre Reaktivit{\"a}t untersucht, hierbei konnte erstmals durch Reduktion ein Diboren-Platin-Komplex synthetisiert werden. Die Untersuchung der Reaktivit{\"a}t von nicht-metallischen Lewis-Basen ergab eine Reihe von sp2-sp3-Diboranen an die entweder PEt3 oder PMeCy2 koordiniert ist. In Abh{\"a}ngigkeit des sterischen Anspruches finden sich zwei Isomere mit 1,2- und 1,1'-Anordnung der Halogene. Die 1,2-Isomere zeigen hierbei im Festk{\"o}rper eine Bor-Halogen-Bor-Br{\"u}cke mit einer dativen Halogen-Bor-Bindung zwischen dem Halogen und dem sp2-Borzentrum.}, subject = {Diborane}, language = {de} } @phdthesis{Dellermann2018, author = {Dellermann, Theresa}, title = {NHC-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, eine Vielzahl NHC-stabilisierter Tetrabromdiboran-Addukte zu synthetisieren und mithilfe von zwei bzw. vier Reduktions{\"a}quivalenten zu reduzieren. Dies f{\"u}hrte zur Bildung neuartiger Dibromdiborene bzw. Diborin-Verbindungen, welche infolgedessen charakterisiert wurden. Der Einfluss des Carbens auf die jeweilige Struktur und Elektronik der synthetisierten Verbindungen war hierbei von besonderem Interesse. Im Fall der Diborine gelang es neben den beiden bereits literaturbekannten Verbindungen XXIII und XXXII drei neue Vertreter mit einer B≡B-Dreifachbindung (7, 8 und 9) darzustellen. Aufgrund der Verwendung von ges{\"a}ttigten Carbenen wurden die spektroskopischen und strukturellen Eigenschaften der Verbindungen soweit modifiziert, dass sie zwischen denen mit einer isolierten Dreifachbindung (B2IDip2 (XXIII) und B2IDep2 (XXXII)) und der mit Kumulencharakter (B2CAAC2 (XXXIV)) eingeordnet werden k{\"o}nnen. Neben der Charakterisierung neuartiger Verbindungen mit Bor-Bor-Dreifachbindungscharakter konnten auch zahlreiche Reaktivit{\"a}tsstudien durchgef{\"u}hrt werden. So verdeutlichte sich der strukturelle und elektronische Unterschied der Diborine vor allem am Beispiel der Reaktivit{\"a}t gegen{\"u}ber CO (Schema 42). W{\"a}hrend f{\"u}r B2IDip2 (XXIII) der Reaktionsverlauf {\"u}ber das Intermediat XXV zum Bis(boralacton) XXVI reagierte, konnte f{\"u}r die Diborine 7 und 8 prim{\"a}r die Bildung des jeweiligen Bis(boraketens) (16 und 18) beobachtet werden. Die Bindungssituation dieser Zwischenstufen wird vor allem durch die π-R{\"u}ckbindungen der Boratome in die CO-Bindung gepr{\"a}gt, welche zu einer Schw{\"a}chung dieser f{\"u}hren und sowohl in den Festk{\"o}rperstrukturen als auch in den Schwingungsspektren verdeutlicht wird. Die weitere Umsetzung zu den entsprechenden Bis(boralactonen) 17 und 19 erfolgte im Anschluss je nach Substituent bei Raumtemperatur (16) oder durch Heizen der Boraketen-Zwischenstufe (18). Mithilfe quantenmechanischer Betrachtung konnte die Ursache der unterschiedlichen Reaktionsverl{\"a}ufe n{\"a}her erl{\"a}utert werden, auch unter Einbeziehung des Diborakumulens XXXIV, welches mit {\"U}berschuss an CO auch bei hohen Temperaturen lediglich zur Bildung des Bis(boraketens) (XXXV) f{\"u}hrt. Dies zeigt, dass aufgrund der unterschiedlichen Reaktionsbarrieren der jeweiligen Diborine bzw. des Diborakumulens mit CO die Bildung des Ketens bzw. anschließend des Bis(boralactons) verschieden stark bevorzugt wird. F{\"u}r B2IDip2 (XXIII) wird deshalb aufgrund der hohen freien Gibbs-Energie, welche bei der Bildung des Bis(boralactons) entsteht, im ersten Schritt keine Bildung des IDip-stabilisierten Bis(boraketens) beobachtet und f{\"u}r B2CAAC2 (XXXIV) aufgrund von nahezu keiner Energiegewinnung im zweiten Schritt lediglich XXXV gebildet. Die freien Gibbs-Energien beider Reaktionsschritte der Umsetzungen von B2SIDip2 (7) und B2SIDep2 (8) mit CO ordnen sich zwischen den oben beschriebenen Extrema ein. Einen Einfluss des Carbens auf die Reaktivit{\"a}t zeigte auch die Umsetzung mit Wasserstoffgas. W{\"a}hrend bei XXIII, XXXII und 7 keine Reaktionen beobachtet werden konnten, verlief diese bei 8 und XXXIV unter einer 1,2-Addition des H2-Molek{\"u}ls an die B-B-Bindung und Bildung der jeweiligen Dihydrodiborene 21 (B2H2SIDep2) und XXXVIII (B2H2CAAC2). Neben der Reaktivit{\"a}t gegen{\"u}ber CO und H2 wurden auch Reaktionen beschrieben, welche zu einer Insertion einer in-situ-gebildeten Borylen-Spezies f{\"u}hrten. Diese sind die Umsetzungen von B2IDip2 (XXIII) mit CO-Quellen oder der Br{\o}nstedt-S{\"a}ure Triethylammonium(tetraphenyl)borat. In beiden F{\"a}llen kam es im Laufe der Reaktion zur Insertion eines Borfragments in die CH-Bindung des Isopropylrestes und zur Bildung der Boracyclen 20 (B2IDip2CO) und 25 ([B2IDip2H][BPh4]). Daneben konnte eine {\"a}hnliche Beobachtung bei der Umsetzung des SIDep-stabilisierten Diborins 8 mit Isonitrilen gemacht werden. Hierbei insertierte bei der Reaktion mit Metyhlisonitril ein Borfragment in den benachbarten Imidazolring unter Ausbildung eines Sechsrings. Gleichzeitig konnte eine CH-Aktivierung des Ethylrestes des Dep-Substituenten beobachtet werden. Bei der analogen Umsetzung mit tert-Butylisonitril wurde neben der einfachen auch die zweifache Insertion beider Borzentren beobachtet. Die Reaktivit{\"a}t gegen{\"u}ber Chalkogenen und Chalkogenverbindungen stellte einen weiteren, zentralen Aspekt dieser Arbeit dar. Die Umsetzung von B2IDip2 mit elementarem Schwefel und Selen f{\"u}hrte dabei zur Spaltung der B≡B-Bindung durch reduktive Insertion von drei Chalkogenbr{\"u}cken und Bildung der entsprechenden Pentachalkogenverbindungen 26 und 27. Die analogen Umsetzungen des Diborins 7 mit Selen f{\"u}hrte ebenfalls zur Bildung einer Pentachalkogenverbindung (29). Da derartige Verbindung in der Literatur bislang nicht bekannt sind, sollte auch deren Reaktivit{\"a}t exemplarisch an 27 untersucht werden. Dabei zeigte sich, dass die Verbindung stabil unter photolytischen Bedingungen ist und sich bei thermischer Behandlung erst nach mehreren Tagen zersetzt. Die Umsetzung mit Triphenylphosphan oder elementarem Natrium zur Entfernung von Selenfragmenten oder mit Triphenylphosphanselenid zur Addition weiterer Seleneinheiten zeigten keine Reaktionen. Lediglich die Umsetzung mit zwei {\"A}quivalenten Natriumnaphthalid f{\"u}hrte zur erfolgreichen Darstellung des Dimers 28. Im Gegensatz dazu lieferte die Reaktion des Diborins 8 mit elementarem Selen bereits ein anderes Strukturmotiv (30), in welchem sechs Selenatome in Form von ein-, zwei und dreiatomigen Henkeln zwischen die Boratome insertierten. Durch Umsetzung mit Triphenylphosphan deuteten erste Reaktionsversuche darauf hin, dass es m{\"o}glich ist, selektiv ein Selenfragment aus der dreiatomigen Selenbr{\"u}cke zu entfernen und die entsprechende Pentachalkogenverbindung 31 zu generieren. Reaktivit{\"a}tsstudien der Diborine XXIII, 7 und 8 gegen{\"u}ber Diphenyldisulfid und -selenid als auch gegen{\"u}ber Isopropylthiol f{\"u}hrten in allen F{\"a}llen zur 1,2-Addition an die B≡B-Bindung unter Bildung der Diborene 32 bis 36 bzw. 42 und 43. Im Gegensatz dazu kam es bei der Reaktion von XXIII mit Diphenylditellurid zur Bildung eines salzartigen Komplexes 37, in welchem ein Phenyltellurireniumkation die B≡B-Bindung verbr{\"u}ckte und das entsprechende Phenyltellurid als Gegenion fungierte. Durch den Einsatz von para-substituierten Diphenylditelluriden konnten zwei weitere Verbindungen (38 und 39) dargestellt werden. Dabei zeigte der para-Substituent jedoch nur einen geringen Einfluss auf die elektronische Struktur der gebildeten Produkte. Die Reaktion von Diborin 8 mit Diphenylditellurid zeigte neben der Bildung des salzartigen Komplexes 40 auch die Entstehung des 1,2-Additionsproduktes 41, was vermutlich wie bereits bei der Reaktion mit elementarem Selen auf sterische Effekte zur{\"u}ckzuf{\"u}hren ist (Schema 45). Aufgrund der besonderen Bindungssituation in den Komplexen 37 bis 40 wurden diese eingehender untersucht. Die Auswertung der R{\"o}ntgenstrukturanalyse, Raman-Spektroskopie, 11B-NMR-Spinkopplungsexperimente sowie der quantenmechanischen Rechnungen ergab dabei Hinweise auf eine Koordinationsverbindung nach dem Dewar-Chatt-Duncanson-Bindungsmodell. Weitere Reaktivit{\"a}tsstudien v.a. des IDip-stabilisierten Diborins (XXIII) besch{\"a}ftigten sich mit der Synthese von π-Komplexverbindungen durch Reaktionen von XXIII mit Alkalimetallkationen in der Ligandensph{\"a}re schwach koordinierender Anionen mit Kupfer(I)-Verbindungen. Die Bildung sogenannter Kation-π-Komplexe des Diborins mit Lithium bzw. Natrium gelang durch die Umsetzung von B2IDip2 (XXIII) mit je zwei {\"A}quivalenten Lithium bzw. Natriumtetrakis(3,5-dichlorphenyl)borat quantitativ unter Bildung von 46 und 47 als unl{\"o}sliche, violette Feststoffe. Die in der Kristallstruktur ersichtliche Bindungssituation zeigt die Einkapselung der jeweiligen Kationen durch das B2-Fragment des Diborins sowie der Arylreste der Ligandensph{\"a}re, die sich infolgeder Komplexierung ekliptisch zueinander anordnen. Aufgrund der ungew{\"o}hnlichen Bindungssituation wurden theoretische Studien aufbauend auf den aus den Kristallstrukturen und den aus spektroskopischen Messungen erhaltenen Daten angefertigt. Diese beweisen eine rein elektrostatische Wechselwirkung der Kationen mit der noch intakten B≡B-Bindung des Diborins. Auch f{\"u}r die Diborine 7 und 8 konnten am Beispiel des Natriumtetrakis(3,5-dichlorphenyl)borats die Komplexe 48 ([B2SIDip2Na2][BArCl4]) und 49 ([B2SIDep2Na2][BArCl4]) erfolgreich dargestellt werden. Dies beweist, dass in den SIDip- und SIDep-substituierten Diborinen noch gen{\"u}gend Elektronendichte auf der B-B-Bindung lokalisiert ist, um derartige π-Wechselwirkungen auszubilden. Die Reaktivit{\"a}t des Diborins XXIII gegen{\"u}ber Kupfer(I)-Verbindungen wurde bereits von Dr. Jan Mies im Zuge seiner Dissertation untersucht. In dieser Arbeit ist es nun gelungen, weitere Komplexe mit Kupfer(I)-alkinylen (50 und 51) darzustellen. Dar{\"u}ber hinaus war es m{\"o}glich, eine alternative Syntheseroute zur Darstellung des dreikernigen Kupfer(I)-chlorid-Komplexes XXVII zu entwickeln sowie den entsprechenden Zweikerner 52 darzustellen. Die Verbindungen XXVII, 52 und XXVIII wurden im Anschluss in Kooperation mit der Gruppe um Dr. Andreas Steffen auf ihre photophysikalischen Eigenschaften hin untersucht.Dabei zeigte sich, dass alle drei Verbindungen aufgrund der langen Lebenszeiten ihrer angeregten Zust{\"a}nde phosphoreszieren, die Quantenausbeute der Phosphoreszenz jedoch stark von der Verbindung abh{\"a}ngig ist. W{\"a}hrend der dreikernige Kupfer(I)-Komplex XXVII bereits in L{\"o}sung eine Quantenausbeute von 29 \% aufwies, war eine Bestimmung der Quantenausbeute in L{\"o}sung f{\"u}r B2IDip2(CuC2TMS)2 (XXVIII) aufgrund der schwachen Emission nicht m{\"o}glich. Die Ursache des unterschiedlichen Emissionsverhaltens konnte mittels Betrachtung von Absorptions- und Anregungsspektren erkl{\"a}rt werden. F{\"u}r B2IDip2(CuCl)3 sind die beiden Spektren in L{\"o}sung nahezu identisch. Im Gegensatz dazu weisen die beiden Zweikerner 52 und XXVIII ein vom Absorptionsspektrum verschiedenes Anregungsspektrum auf, was darauf schließen l{\"a}sst, dass es zu Konformations{\"a}nderungen im angeregten Zustand kommt, welche die Emission ausl{\"o}scht. TheoretischeStudien best{\"a}tigen f{\"u}r 52, dass die Barriere zwischen zwei Konformeren, in denen die Kupferfragmente linear bzw. orthogonal angeordnet sind, lediglich 4.77 kcal/mol betr{\"a}gt und bekr{\"a}ftigen damit die vermutete Ursache der schwachen Emission. Ein zweites Thema dieser Arbeit besch{\"a}ftigte sich mit der Darstellung und Untersuchung neuartiger Dibromdiborene, welche im Zuge der Diborin-Synthese beobachtet werden konnten. Dabei gelang es neben dem bereits literaturbekannten IDip-stabilisierten Dibromdiboren (XXIV) noch sechs weitere Vertreter dieser Verbindungsklasse darzustellen (10-15). Auch hier konnte ein Einfluss der Carbenliganden auf die strukturellen und elektronischen Eigenschaften beobachtet werden. Die Reaktivit{\"a}t der Dibromdiborene wurde in einigen Testreaktionen untersucht. Dabei zeigte sich, dass im Hinblick auf ihr Oxidationsverhalten die literaturbekannte Darstellung von Monokationen (53 [B2Br2IDip2][BArF4] und 54 [B2Br2IDep2][BArF4]) nachempfunden werden konnte. Versuche zur Bromsubstitution zeigten durch Umsetzung mit BuLi den Austausch der Bromid-Liganden durch Butylgruppen, jedoch bildeten sich aufgrund von Umlagerungen anstelle der erwarteten Diborene die kondensierten Ringsysteme 56-58.}, subject = {Bor}, language = {de} }