@phdthesis{Albert2012, author = {Albert, Ferdinand}, title = {Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungstr{\"a}ger unterhalb der de-Broglie-Wellenl{\"a}nge eingeschr{\"a}nkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als k{\"u}nstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikros{\"a}ulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavit{\"a}t, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission {\"u}ber Fabry-Perot Moden, als auch eine laterale Emission {\"u}ber Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungstr{\"a}gern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt {\"u}ber das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die D{\"a}mpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erh{\"o}ht werden kann. In diesem Regime k{\"o}nnen Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpstr{\"o}men realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Bisping2010, author = {Bisping, Dirk}, title = {Wachstum und Charakterisierung von GaInNAs-basierenden Halbleiterstrukturen f{\"u}r Laseranwendungen in der optischen Telekommunikation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Im Rahmen dieser Arbeit wurden mit Molekularstrahlepitaxie GaInNAs-Strukturen f{\"u}r m{\"o}gliche Anwendungen in der Telekommunikation als GaAs-basierende Alternative f{\"u}r herk{\"o}mmliche Laser auf InP-Substrat hergestellt und untersucht. Zun{\"a}chst wurden durch Optimierung der Substrattemperaturmessung und RF-Plasmaquelle die Voraussetzungen f{\"u}r gutes GaInNAs-Wachstum geschaffen. Thermisches Ausheilen ist essentiell, um eine gute optische Qualit{\"a}t von GaInNAs-Strukturen zu erzielen. Man beobachtet einen signifikanten Einfluss von Ausheildauer und -temperatur. Exzessives Ausheilen bei zu hohen Temperaturen bzw. zu langen Zeiten f{\"u}hrt, neben einer ebenso unerw{\"u}nschten Blauverschiebung der Emission, wiederum zu einer Degradation der optischen Qualit{\"a}t, die sich in einer deutlichen Reduktion der Photolumineszenz(PL)-Intensit{\"a}t {\"a}ußert. GaInNAs-Quantenfilm(QF)-Laser mit Emission um 1240 nm mit m{\"o}glicher Anwendung als Pumplaser f{\"u}r Ramanverst{\"a}rker wurden hergestellt und charakterisiert. Durch eine Optimierung des in-situ-Ausheilens dieser Laserstrukturen konnten Laser mit sehr niedrigen Schwellenstromdichten von deutlich unter 200 A/cm^2 hergestellt werden. F{\"u}r eine m{\"o}glichst hohe Ausgangsleistung wurde der Wirkungsgrad der Bauteile durch eine Optimierung der internen Verluste erh{\"o}ht. Eine Reduktion der internen Verluste konnte durch eine Anpassung des Dotierprofils und die Verwendung von sogenannten Large-Optical-Cavities (LOCs) erreicht werden. Mit Hilfe des LOC-Designs konnten sehr niedrige interne Verluste von nur 0,5 1/cm bei einer internen Quanteneffizienz von nahezu 80 \% erreicht werden. Mit optimierten Strukturen wurde stabiler Dauerstrichbetrieb bei Ausgangsleistungen von mehreren Watt {\"u}ber 1000~h ohne sichtbare Degradation demonstriert. Mit auf dem LOC-Design basierenden Lasern konnte schließlich eine sehr hohe Ausgangsleistung von ca. 9 W gezeigt werden. Anschließend wurden Untersuchungen zu Quantenpunkten (QPen) im Materialsystem GaInNAs vorgestellt. Mit steigendem Stickstoffgehalt beobachtet man eine Rotverschiebung der Emission bis auf 1,43 µm, allerdings gleichzeitig eine deutliche Degradation der optischen Qualit{\"a}t. Eine Untersuchung der QP-Morphologie ergibt eine Reduktion der Homogenit{\"a}t der QP-Gr{\"o}ßenverteilung, die sich im Auftreten zweier unterschiedlich großer QP-Ensembles {\"a}ußert. Um diese Degradation der QPe zu vermeiden, wurde weiterhin auf den N-Einbau in den QPen verzichtet. Wider Erwarten f{\"u}hrt der Verzicht auf N in den QPen nicht zu einer Blauverschiebung der Emission. Dieses Resultat konnte auf die ver{\"a}nderte QP-Morphologie zur{\"u}ckgef{\"u}hrt werden. Durch eine Erh{\"o}hung des N-Gehaltes im die QP {\"u}berwachsenden QF wurde eine weitere deutliche Rotverschiebung der Emission erreicht. So konnte PL-Emission bei Raumtemperatur mit einem Emissionsmaximum bei 1600 nm demonstriert werden. Weiterhin wurden GaInNAs-QF-Strukturen f{\"u}r Laser im Wellenl{\"a}ngenbereich um 1550 nm untersucht. Da das Wachstum hier auf Grund des deutlich h{\"o}heren, notwendigen N-Gehaltes wesentlich schwieriger wird, erfolgte zun{\"a}chst eine detaillierte Untersuchung der wesentlichen Wachstumsparameter. Hierbei ist es essentiell, auch das Ausheilverhalten der jeweiligen Strukturen genau zu betrachten. Bei einer Untersuchung des Einflusses der Wachstumstemperatur auf GaInNAs-Teststrukturen wurden signifikante Unterschiede auch bei nur sehr geringen {\"A}nderungen in der Substrattemperatur von nur 10 °C festgestellt. Die beobachteten Effekte wurden vor dem Hintergrund des Modells der QP-{\"a}hnlichen Emitter diskutiert. Eine Variation des Arsen-Flusses zeigte einen deutlichen Einfluss auf die PL-Emission und vor allem auf das Ausheilverhalten. Das Ausheilverhalten l{\"a}sst sich durch eine Anpassung des Arsen-Flusses maßgeschneidert anpassen. W{\"a}hrend dem {\"U}berwachsen der aktiven Schicht mit Mantel- und Kontaktschicht kann es bereits zu einem {\"U}berausheilen der Strukturen kommen. Es wurden Laser mit niedrigen Schwellenstromdichten um 1 kA/cm^2 bis zu einer Wellenl{\"a}nge von 1500 nm hergestellt. F{\"u}r h{\"o}here Wellenl{\"a}ngen steigt die Schwellenstromdichte in den Bereich von 2 bis 3 kA/cm^2. Maximal wurde Laseremission bei {\"u}ber 1600 nm erreicht. Bei der Untersuchung der bei 1600 nm emittierenden Laserdioden wurde eine Verbreiterung der Laseremission zur hochenergetischen Seite auf bis zu 150 nm Bandbreite bei steigendem Betriebsstrom beobachtet. Dieser Effekt kann mit Hilfe des Modells der QP-{\"a}hnlichen Emitter verstanden werden. Unter Ausnutzung dieses Effekts wurden auf dem selben epitaktischen Material monomodige Distributed-Feedback(DFB)-Laser {\"u}ber einen Wellenl{\"a}ngenbereich von ca. 1500 nm bis 1600 nm gezeigt. Auf Basis der zuvor vorgestellten langwelligen Laserstrukturen mit niedrigen Schwellenstromdichten wurde erstmals Dauerstrichbetrieb von monomodigen DFB-Lasern im Bereich um 1500 nm und von multimodigen Stegwellenleiter-Lasern {\"u}ber 1500 nm im Materialsystems GaInNAs gezeigt.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Braun2016, author = {Braun, Tristan}, title = {Spektroskopie an positionierten III-V-Halbleiterquantenpunkten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146151}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg f{\"u}r die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschl{\"u}sselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu k{\"o}nnen, um eine abh{\"o}rsichere {\"U}bertragung sensibler Daten zu realisieren. Als Lichtquellen daf{\"u}r eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant f{\"u}r die Entwicklung solch fortschrittlicher Technologien, welche f{\"u}r eine abh{\"o}rischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle f{\"u}r die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam haupts{\"a}chlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterf{\"u}hrend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgef{\"u}hrt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorst{\"a}rke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgef{\"u}hrt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkth{\"o}he durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachtr{\"a}glich bei Temperaturen von 750° C bis 850° C f{\"u}r f{\"u}nf Minuten ausgeheilt wurden. Anhand polarisationsaufgel{\"o}ster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Land{\´e} g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl h{\"o}here Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies l{\"a}sst darauf schließen, dass eine dickere Bedeckungsschicht zu einer st{\"a}rkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte f{\"u}r ex-situ Ausheilprozesse f{\"u}hrt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgel{\"o}ster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl {\"u}ber die Untersuchungen des diamagnetischen Koeffizienten als auch {\"u}ber die Analyse der Lebensdauer konnte schließlich die Oszillatorst{\"a}rke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen {\"a}hnliche Ergebnisse. Die h{\"o}chste Oszillatorst{\"a}rke \(f_{\chi}=34,7\pm 5,2\) konnte f{\"u}r eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C {\"u}ber den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung {\"u}ber die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorst{\"a}rke im Vergleich zu den Referenzproben um einem Faktor gr{\"o}ßer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70\% festgestellt werden. Insgesamt betrachtet, l{\"a}sst sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorst{\"a}rke nachtr{\"a}glich deutlich erh{\"o}hen, wodurch InAs/GaAs-Quantenpunkte noch interessanter f{\"u}r Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabh{\"a}ngigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabh{\"a}ngige Messungen durchgef{\"u}hrt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann R{\"u}ckschl{\"u}sse auf die auftretenden Verlustkan{\"a}le in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache f{\"u}r den Intensit{\"a}tsabfall bei h{\"o}heren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zust{\"a}nde in der Benetzungsschicht sorgt f{\"u}r die anf{\"a}ngliche Abnahme der Intensit{\"a}t bei niedrigeren Temperaturen. Der starke Abfall bei h{\"o}heren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungstr{\"a}ger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch f{\"u}r zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensit{\"a}tsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache f{\"u}r die Zunahme der Linienbreite auf. F{\"u}r hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten f{\"u}r das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabh{\"a}ngigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inh{\"a}rente Grenze f{\"u}r die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zun{\"a}chst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabh{\"a}ngige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungew{\"o}hnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsph{\"a}nomenen in der umgebenden GaInP-Matrix wurden im Mittel {\"u}ber 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)\% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erkl{\"a}ren l{\"a}sst. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig f{\"u}r diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine f{\"u}r Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verst{\"a}rkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu k{\"o}nnen, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensit{\"a}t aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erh{\"o}hung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)\% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis f{\"u}r die Realisierung hocheffizienter Einzelphotonenquellen.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Brodbeck2020, author = {Brodbeck, Sebastian}, title = {Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen}, doi = {10.25972/OPUS-20739}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren f{\"u}hrt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen k{\"o}nnen zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgel{\"o}st wird. Durch den direkten Zugang zu Polariton-Zust{\"a}nden in spektroskopischen Experimenten, sowie durch die M{\"o}glichkeit mit vielf{\"a}ltigen Mitteln nahezu beliebige Potentiallandschaften definieren zu k{\"o}nnen, er{\"o}ffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder k{\"o}nnen Erkenntnisse {\"u}ber Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zug{\"a}nglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin k{\"o}nnen die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was f{\"u}r die Erzeugung dynamischer Potentiale relevant werden k{\"o}nnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Ph{\"a}nomene der Licht-Materie-Wechselwirkung unter dem Einfluss {\"a}ußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu k{\"o}nnen, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfl{\"a}che und -r{\"u}ckseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrot{\"u}rmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungstr{\"a}ger, wie er im Mikrot{\"u}rmchen erzielt wird, zu einer Umkehrung der Energieverschiebung f{\"u}hrt. W{\"a}hrend in dieser Geometrie mit zunehmender Feldst{\"a}rke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erkl{\"a}rt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden F{\"a}llen k{\"o}nnen, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute {\"U}bereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden k{\"o}nnen. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldst{\"a}rken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen {\"A}tzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdr{\"u}ckt werden, wobei sich die Feldabh{\"a}ngigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren l{\"a}sst. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungstr{\"a}ger ist. Dadurch l{\"a}sst sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben h{\"a}ufig beobachtet werden, auf grunds{\"a}tzlich verschiedene Verst{\"a}rkungsmechanismen zur{\"u}ckgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabh{\"a}ngigen Photostroms beobachtet, da dort freie Ladungstr{\"a}ger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle f{\"u}r Polariton- und Photon-Laser l{\"a}sst sich der ermittelte Verlauf der Ladungstr{\"a}gerdichte {\"u}ber den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton f{\"u}r zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsst{\"a}rke werden die Hybridmoden in guter N{\"a}herung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. F{\"u}r den Resonator mit großer Kopplungsst{\"a}rke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Gr{\"o}ßenordnung {\"u}ber der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 {\"u}bersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich gr{\"o}ßer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszust{\"a}nden des Quantenfilms erkl{\"a}ren l{\"a}sst.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Boeckler2010, author = {B{\"o}ckler, Carolin}, title = {Photon-Exziton Wechselwirkung in Fabry-P{\´e}rot-Mikroresonatoren auf Basis von III-V Halbleitern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53543}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die enormen Fortschritte im Bereich der Halbleiter-Nanotechnologie haben es in den letzten Jahren erlaubt, quantenoptische Ph{\"a}nomene nicht nur in atomaren Systemen, sondern auch mehr und mehr in Festk{\"o}rpern zu beobachten. Von besonderer Bedeutung ist hierbei die Wechselwirkung zwischen Licht und Materie im Rahmen der Kavit{\"a}t-Quantenelektrodynamik, kurz cQED. Das große Interesse an diesem sehr aktiven Feld der modernen Quantenoptik erkl{\"a}rt sich {\"u}ber die m{\"o}gliche Anwendung von cQED-Effekten in neuartigen Lichtquellen und Elementen der Quanteninformationsverarbeitung. Halbleiterstrukturen zeichnen sich in diesem Zusammenhang durch eine potentiell hohe Skalierbarkeit sowie ein kompaktes und effzientes Design aus. Die gew{\"u}nschte Wechselwirkung kann jedoch nur in qualitativ hochwertigen Halbleiterstrukturen mit quasi nulldimensionalem Licht- und Ladungstr{\"a}gereinschluss realisiert werden. Daher wird weltweit mit hohem technologischen Aufwand an der Realisierung von Mikroresonatoren mit Quantenpunkten als diskrete Photonenemitter geforscht. Erste Erfolge auf diesem Gebiet haben es erlaubt, Licht-Materie-Wechselwirkung im Regime der schwachen, von dissipativen Verlusten gepr{\"a}gten Kopplung zu verwirklichen. Vor diesem Hintergrund besch{\"a}ftigt sich die vorliegende Arbeit mit dem koh{\"a}renten Kopplungsverhalten zwischen einzelnen Quantenpunkt-Exzitonen und dem Vakuumfeld von Mikroresonatoren. Das Hauptziel dieser Arbeit ist es, den experimentellen Nachweis der starken Kopplung in III-V Fabry-P{\´e}rot Mikroresonatoren mit Quantenpunkten als aktive Schicht zu erbringen. Dar{\"u}ber hinaus wird aber auch die koh{\"a}rente Kopplung von zwei Quantenpunkt-Exzitonen {\"u}ber das Vakuumfeld des Resonators experimentell untersucht. Quantenpunkt-Mikroresonatorstrukturen sind aufgrund ihrer hohen G{\"u}ten und großen Purcell-Faktoren weiterhin pr{\"a}destiniert f{\"u}r den Einsatz als Mikrolaser mit sehr geringer Laserschwelle. Neben der Herstellung und Charakterisierung von Mikrolasern mit großen Q-Faktoren befasst sich die vorliegende Arbeit mit dem Einfluß einzelner Quantenpunkt-Exzitonen auf das Lasing-Verhalten eines Mikroresonators, mit dem Fernziel einen Einzelquantenpunkt-Laser zu realisieren. F{\"u}r die Verwirklichung dieser beiden Hauptziele werden Mikroresonatoren h{\"o}chster G{\"u}te ben{\"o}tigt. Dies stellt enorme Anforderungen an die Technologie der Mikroresonatoren. Der vertikale Aufbau der hier vorgestellten GaAs/AlAs Fabry-P{\´e}rot Mikroresonatoren mit ihren InGaAs-Quantenpunkten als aktive Schicht wird mittels Molekularstrahlepitaxie realisiert....}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Gerhard2011, author = {Gerhard, Sven}, title = {AlGaInP-Quantenpunkte f{\"u}r optoelektronische Anwendungen im sichtbaren Spektralbereich}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76174}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Arbeit besch{\"a}ftigt sich mit der Herstellung und Charakterisierung von AlGaInP Quantenpunkten auf GaP und GaAs-Substrat. Auf Basis dieser Quantenpunkte wurden Halbleiterlaser auf GaAs hergestellt, welche bei Raumtemperatur zwischen 660 nm und 730 nm emittierten. Die Untersuchung von Breitstreifenlasern, welche aus diesen Strukturen gefertigt wurden, legen nahe, dass man mithilfe eines h{\"o}heren Aluminiumanteils in gr{\"o}ßeren Quantenpunkten bei vergleichbarer Wellenl{\"a}nge Laser mit besseren Eigenschaften realisieren kann. Weiterhin wurden in dieser Arbeit Quantenpunkten auf GaP-Substrat untersucht, welche in AlGaP eingebettet wurden. Da diese Quantenpunkte in Barrieren eingebettet sind, welche eine indirekte Bandl{\"u}cke besitzen, ergibt sich ein nicht-trivialer Bandverlauf innerhalb dieser Strukturen. In dieser Arbeit wurden numerische 3D-Simulationen verwendet, um den Bandverlauf zu berechnen, wobei Verspannung und interne Felder ber{\"u}cksichtigt wurden und auch die Grundzustandswellenfunktionen ermittelt wurden. Ein eingehender Vergleich mit dem Experiment setzt die gemessenen Emissionswellenl{\"a}ngen und -intensit{\"a}ten mit berechneten {\"U}bergangsenergien und {\"U}berlappintegralen in Verbindung.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Hartmann2008, author = {Hartmann, David}, title = {Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Hetero{\"u}berg{\"a}ngen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfl{\"a}che ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer {\"A}tztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorz{\"u}ge derartiger Strukturen zeigen sich im ballistischen Elektronentransport {\"u}ber mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendr{\"a}hte sowie y-f{\"o}rmig verzweigte Strukturen untersucht, deren Kanalleitwert {\"u}ber seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen {\"u}berwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgef{\"u}hrt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verst{\"a}rkungseigenschaften und kapazitiven Kopplungen zwischen Nanodr{\"a}hten, der Realisierung von komplexen Logikfunktionen wie Z{\"a}hler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzph{\"a}nomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes.}, subject = {Niederdimensionales Elektronengas}, language = {de} } @phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Krebs2004, author = {Krebs, Roland}, title = {Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenstr{\"o}me zu erreichen sind und die Emissionswellenl{\"a}nge {\"u}ber einen gr{\"o}ßeren Bereich abgestimmt werden kann, da diese aufgrund der Gr{\"o}ßenfluktuation im Quantenpunktensemble {\"u}ber ein breites Verst{\"a}rkungsspektrum verf{\"u}gen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser f{\"u}r Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verst{\"a}rkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (f{\"u}r den Grundzustands{\"u}bergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorl{\"a}nge von 0.8 mm m{\"o}glich. F{\"u}r eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelverg{\"u}tungen wiesen im Dauerstrichbetrieb Schwellenstr{\"o}me um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. F{\"u}r Telekommunikationsanwendungen werden Bauteile ben{\"o}tigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verst{\"a}rkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenl{\"a}nge {\"u}ber einen Wellenl{\"a}ngenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgef{\"u}hrt. F{\"u}r Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verst{\"a}rkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zun{\"a}chst im Wellenl{\"a}ngenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zun{\"a}chst wurden undotierte Mikroresonatorstrukturen f{\"u}r Grundlagenuntersuchungen hergestellt, um die Qualit{\"a}t der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavit{\"a}t aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen G{\"u}ten {\"u}ber 8000 realisiert werden. F{\"u}r die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage m{\"o}glich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgem{\"a}ß zeigten die VCSEL mit der h{\"o}heren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu k{\"o}nnen, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavit{\"a}t zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenl{\"a}ngenbereich um 1 µm mit komplett dotierten Spiegeln ohne gr{\"o}ßere Abstriche bei den Bauteildaten m{\"o}glich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verst{\"a}rkung Probleme.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Maier2017, author = {Maier, Sebastian}, title = {Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie L{\"o}sungen f{\"u}r aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abh{\"o}rsichere Kommunikationsprotokolle und k{\"o}nnte, mit der Realisierung von Quantenrepeatern, auch {\"u}ber große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) k{\"o}nnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu l{\"o}sen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik gen{\"u}gen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu k{\"o}nnen. In halbleiterbasierten Ans{\"a}tzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten f{\"u}r diese Experimente etabliert. Halbleiterquantenpunkte weisen große {\"A}hnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich {\"u}berdies als exzellente Emitter f{\"u}r einzelne und ununterscheidbare Photonen aus. Außerdem k{\"o}nnen mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So k{\"o}nnen station{\"a}re Quantenbits (Qubits) in Form von Elektronenspinzust{\"a}nden gespeichert werden und mittels Spin-Photon-Verschr{\"a}nkung weit entfernte station{\"a}re Qubits {\"u}ber fliegende photonische Qubits verschr{\"a}nkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften f{\"u}r Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis f{\"u}r das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie erm{\"o}glicht h{\"o}chste kristalline Qualit{\"a}ten und bietet die M{\"o}glichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erh{\"o}ht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verst{\"a}rkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. F{\"u}r die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind f{\"u}r Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration f{\"u}r Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Koh{\"a}renzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavit{\"a}ten weisen gr{\"o}ßere Werte f{\"u}r die Spindephasierungszeit auf als Mikro- und Nanot{\"u}rmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle f{\"u}r einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensit{\"a}t und optische Qualit{\"a}t mit Halbwertsbreiten nahe der nat{\"u}rlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42\% f{\"u}r reine Einzelphotonenemission bestimmt und {\"u}bersteigt damit die, f{\"u}r eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33\%) deutlich. Als Grund hierf{\"u}r konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavit{\"a}ten einerseits als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtb{\"u}ndelung verbessern. In weiterf{\"u}hrenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschr{\"a}nkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein f{\"u}r halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es m{\"o}glich, die komplette Tomographie eines verschr{\"a}nkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. {\"U}berdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein f{\"u}r Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen f{\"u}r optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerst{\"o}rungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein k{\"u}rzlich ver{\"o}ffentlichtes theoretisches Konzept k{\"o}nnte hierzu einen eleganten Weg er{\"o}ffnen: Hierbei wird die spinabh{\"a}ngige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgen{\"u}tzt. So k{\"o}nnte die Spin-Information zerst{\"o}rungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits {\"u}ber gr{\"o}ßere Distanzen erm{\"o}glicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abh{\"a}ngig von der G{\"u}te des Mikroresonators, {\"u}ber mehrere μm ausdehnen kann. Dies und weitere m{\"o}gliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems w{\"u}nschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universit{\"a}t Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavit{\"a}t mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualit{\"a}t und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer N{\"a}he zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: F{\"u}r die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualit{\"a}t ist eine skalierbare technologische Produktionsplattform w{\"u}nschenswert. Dazu m{\"u}ssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden k{\"o}nnen. Basierend auf zweidimensionalen, regelm{\"a}ßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip f{\"u}r die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit ge{\"a}tzten Nanol{\"o}chern, welche als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erh{\"o}hte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenl{\"a}nge erreicht werden.}, subject = {Quantenpunkt}, language = {de} }