@phdthesis{Leisegang2021, author = {Leisegang, Markus}, title = {Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde}, doi = {10.25972/OPUS-25076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Verlustarmer Ladungstr{\"a}gertransport ist f{\"u}r die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende W{\"a}rme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungstr{\"a}gertransport bestimmen, laufen jedoch auf L{\"a}ngenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu k{\"o}nnen, bedarf es Messmethoden mit hoher zeitlicher oder {\"o}rtlicher Aufl{\"o}sung. F{\"u}r Letztere gibt es wenige etablierte Experimente, h{\"a}ufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschr{\"a}nkungen unterliegen. Um die M{\"o}glichkeiten der Detektion von Ladungstr{\"a}gertransport auf Distanzen der mittleren freien Wegl{\"a}nge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molek{\"u}l als Detektor f{\"u}r Ladungstr{\"a}ger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molek{\"u}l in das untersuchte Substrat injiziert werden. Die hohe Aufl{\"o}sung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors erm{\"o}glicht dabei atomare Kontrolle von Transportpfaden {\"u}ber wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierf{\"u}r werden zun{\"a}chst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Molek{\"u}ls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden F{\"a}llen zeigt sich eine signifikante {\"A}nderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Molek{\"u}ls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zus{\"a}tzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfl{\"a}che, was einen nicht-punktf{\"o}rmigen Detektor best{\"a}tigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde pr{\"a}sentiert. Zun{\"a}chst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungstr{\"a}gern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfl{\"a}che durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Schmitt2007, author = {Schmitt, Stefan}, title = {Adsorbatinduzierte richtungsabh{\"a}ngige Facettierung und selbstorganisierte Dom{\"a}nen-Musterbildung auf vizinalen Ag(111)-Oberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25088}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit den strukturellen Aspekten einer adsorbat-induzierten Facettierung von vizinalen Ag(111)-Oberfl{\"a}chen. Bei dem Adsorbat handelte es sich um das organische Molek{\"u}l Perylen-3,4,9,10-Tetracarbons{\"a}ure-Dianhydrid (PTCDA). Die Experimente wurden unter Ultrahochvakuum-Bedingungen durchgef{\"u}hrt, die Charakterisierung erfolgte haupts{\"a}chlich mit den Messmethoden Rastertunnelmikroskopie (STM) und niederenergetische Elektronenbeugung (LEED). Das planare Farbstoffmolek{\"u}l PTCDA adsorbiert pr{\"a}ferentiell an den Stufenkanten der verwendeten 8.5° Ag(111)-Vizinaloberfl{\"a}chen und induziert bei geeigneten Pr{\"a}parationsbedingungen eine Rekonstruktion in stark gestufte Facettenfl{\"a}chen und in stufenfreie (111)-Terrassen. Die beobachteten Facetten sind f{\"u}r das System PTCDA/Ag charakteristisch und stellen durch eine molekulare {\"U}berstruktur richtungsselektiv stabilisierte Ag-Kristallebenen dar. Durch die Variation der Stufenrichtung der Startoberfl{\"a}che wurde eine Vielzahl von Facettentypen erhalten und nach Miller indiziert. In ihrer Gesamtheit erlauben sie einen R{\"u}ckschluss auf das Aussehen der Gleichgewichtskristallform eines mit PTCDA bedeckten Ag-Kristalles und damit auf das richtungsabh{\"a}ngige Benetzungsverhalten von Ag. Aus der Sicht des Substrates bewirkt das Adsorbat eine massive Erh{\"o}hung der Steifheit der Stufen. Die durch eine molekulare {\"U}berstruktur stabilisierten Facettenfl{\"a}chen {\"u}bernehmen die in der Kristallstruktur des Substrates angelegten Stufenrichtungen. Die gefundene Ausbildung von zwei typischen Facettensteigungen ist jedoch nicht durch die Ag-Kristallstruktur motivierbar. Die Facettierung wurde im Rahmen einer speziellen Adaption des Konzepts der Thermodynamik auf ebene gestufte Oberfl{\"a}chen als Orientierungsphasenseparation beschrieben. Dieses Konzept erlaubt eine korrekte Beschreibung der beobachteten lokalen Ph{\"a}nomene und zeigt zudem auf, dass das molekulare Gas, welches in den Messungen nicht erfasst wurde, eine wichtige Rolle bei der Rekonstruktion spielt. Es ergaben sich wichtige Indizien f{\"u}r die Existenz einer kritischen Inselgr{\"o}ße f{\"u}r PTCDA auf Ag(111). Es wurde eine vollst{\"a}ndige strukturelle Analyse aller stabilen molekularen {\"U}berstrukturen auf vizinalen Ag(111)-Oberfl{\"a}chen durchgef{\"u}hrt. Es wurden insgesamt 16 solcher {\"U}berstrukturen gefunden, von denen bisher nur 3 Strukturen bekannt und ver{\"o}ffentlicht waren. Dichte und Kommensurabilit{\"a}t der Facetten{\"u}berstrukturen sind systematisch vom Stufentyp der Oberfl{\"a}che abh{\"a}ngig. Die Frage nach dem Ursprung der beiden charakteristischen Facettensteigungen ist mit der Existenz von zwei Typen von {\"U}berstrukturgrenzen verkn{\"u}pft. Die Grenze bestimmt die Lage der fischgr{\"a}tartigen {\"U}berstruktur zu den Stufenkanten und die L{\"a}nge und die Breite des Molek{\"u}ls die beiden charakteristischen Stufenabst{\"a}nde. Letzteres geschieht verm{\"o}ge einer lokalen Wechselwirkung der PTCDA-Molek{\"u}le mit den Stufen. Die {\"U}berstrukturgrenzen erweisen sich als wichtiges Element der Rekonstruktion. Es wurden außerdem die Abh{\"a}ngigkeiten der verschiedenen, aneinander angrenzenden {\"U}berstrukturen aufgezeigt. Auf den (111)-Terrassen fanden sich 3 metastabile Ausnahme-Strukturen, welche einen vertieften Einblick in die komplexe Bildungskinetik der bisher bekannten stabilen (111)-Struktur erlauben. Die Facetten bilden zusammen mit den benachbarten (111)-Terrassen regelm{\"a}ßige, einem Reflexionsgitter {\"a}hnliche Muster mit einer Strukturweite von 5 bis 75nm. Die beobachteten Strukturweiten erreichen bei ausgedehntem Tempern typische Maximalwerte. STM-Messungen zeigen den Einfluss einer langreichweitigen Wechselwirkung zwischen den Facetten, vermittelt {\"u}ber elastische Eigenschaften des Substrates. Die Muster k{\"o}nnen als selbstorganisierte Zweiphasensysteme im thermodynamischen Gleichgewicht erkl{\"a}rt werden. Die Facetten wirken wie repulsiv wechselwirkende Defekte in einem elastischen Medium. Die Eignung dieser Muster als Templat wurde in Kooperation mit einer anderen Arbeitsgruppe am Beispiel der selektiven Deposition von Eisen belegt.}, subject = {Adsorbat}, language = {de} } @phdthesis{Vogt2006, author = {Vogt, Gerhard Sebastian}, title = {Adaptive Femtosekunden-Quantenkontrolle komplexer Molek{\"u}le in kondensierter Phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die Bildung verschiedener Isomere durch {\"A}nderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung f{\"u}r viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gel{\"o}sten Modellmolek{\"u}ls mittlerer Gr{\"o}ße mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In {\"U}bereinstimmung mit den von ihnen durchgef{\"u}hrten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfl{\"a}che nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molek{\"u}l entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgef{\"u}hrt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erh{\"o}ht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien {\"u}ber den Isomerisierungsprozess haben weiterf{\"u}hrende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch k{\"o}nnen molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erh{\"o}hung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine M{\"o}glichkeit der effektiven Beeinflussung der Reaktionsdynamik er{\"o}ffnen. Mit der weiterentwickelten Methode k{\"o}nnen solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zus{\"a}tzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollst{\"a}ndigt. H{\"a}ufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen L{\"o}sungen und sollten daher gesondert untersucht werden. Dazu k{\"o}nnen verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch {\"a}ndert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenl{\"a}nge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgef{\"u}hrt. Durch zus{\"a}tzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und best{\"a}tigt werden. In einem abschließenden Experiment wurde die Abh{\"a}ngigkeit der Anregeeffizienz eines komplexen, in Methanol gel{\"o}sten Farbstoffmolek{\"u}ls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel {\"a}hnlich gut erf{\"u}llen k{\"o}nnen. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften k{\"o}nnen einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen erm{\"o}glichen und Informationen {\"u}ber die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr {\"u}ber verschiedene Prozesse unterschiedlicher Molek{\"u}lklassen zu lernen ist ein viel versprechendes und realistisches Ziel f{\"u}r die Zukunft. Die pr{\"a}sentierten Experimente zeigen, dass es m{\"o}glich ist, geometrische {\"A}nderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern.}, subject = {Molek{\"u}l}, language = {de} }