@phdthesis{Eggert2005, author = {Eggert, Christian}, title = {Untersuchungen zur Biogenese spleißosomaler UsnRNPs und ihrer Bedeutung f{\"u}r die Pathogenese der SMA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die neurodegenerative Krankheit Spinale Muskelatrophie (SMA) wird durch den Mangel an funktionellem Survival Motor Neuron Protein (SMN) verursacht. Eine Funktion von SMN liegt in der Biogenese spleißosomaler UsnRNPs (U-rich small nuclear ribonucleoprotein particles). Diese Arbeit zeigt in einem SMA-Modell in Hela-Zellkultur, dass der SMN-Mangel zu einer reduzierten de novo-Produktion der spleißosomalen UsnRNPs f{\"u}hrt. In einem Zebrafisch-Modell f{\"u}r SMA wurde nachgewiesen, dass die reduzierte UsnRNP-Produktion die Degenerationen von Axonen der Motoneuronen verursacht, einen Ph{\"a}notyp wie er bei SMA auftritt. Damit konnte erstmals eine direkte Verbindung zwischen einer zellul{\"a}ren Funktion von SMN und der Entstehung von SMA hergestellt werden.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Karle2008, author = {Karle, Kathrin Nora}, title = {Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins f{\"u}r das Axonwachstum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die proximale spinale Muskelatrophie (SMA) stellt eine der h{\"a}ufigsten erblichen Ursachen f{\"u}r den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschw{\"a}che und in schweren F{\"a}llen auch an sensiblen Ausf{\"a}llen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquit{\"a}r exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist f{\"u}r alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus f{\"u}r die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die {\"U}berlebensraten der Smn-/-;SMN2-Motoneurone 14 Tage alter Mausembryonen gegen{\"u}ber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonl{\"a}ngen der Smn-defizienten Motoneurone waren gegen{\"u}ber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeintr{\"a}chtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn-/-;SMN2 Motoneuronen eine signifikante Verminderung der Fl{\"a}che gegen{\"u}ber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukle{\"a}ren Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn-/-;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsst{\"o}rung fand sich f{\"u}r das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch f{\"u}r die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Ver{\"a}nderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn-/-;SMN2-M{\"a}usen war die Neuritenl{\"a}nge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verk{\"u}rzt und die Fl{\"a}che der Wachstumskegel hochsignifikant verringert. Im Smn-/-;SMN2 Mausmodell f{\"u}r eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgepr{\"a}gte, jedoch gleichartige Ver{\"a}nderungen, was auf einen {\"a}hnlichen Pathomechanismus in beiden Zelltypen hinweist.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Lechner2009, author = {Lechner, Barbara Dorothea}, title = {Modulation des axonalen Wachstums prim{\"a}rer Motoneurone durch cAMP in einem Mausmodell f{\"u}r die Spinale Muskelatrophie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39585}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Spinale Muskelatrophie (SMA) ist eine h{\"a}ufige autosomal-rezessiv vererbte Erkrankung des motorischen Nervensystems bei Kindern. Ursache der Degeneration von spinalen Motoneuronen ist der homozygote Verlust des SMN- (survival of motoneuron) Gens und ein dadurch bedingter Mangel an SMN-Protein. Untersuchungen an Motoneuronen von Smn-defizienten M{\"a}usen ergaben St{\"o}rungen des axonalen L{\"a}ngenwachstums aufgrund einer Fehlverteilung des Zytoskelettproteins beta-Aktin und seiner mRNA in den Axonterminalen. Das Axonwachstum wird durch Aktin-Polymerisierung im Wachstumskegel gesteuert. beta-Aktin-mRNA findet sich auch in Axonen, und die lokale Proteinsynthese kann durch neuronale Aktivierung gesteigert werden. Das SMN-Protein ist am axonalen Transport von beta-Aktin beteiligt. In der vorliegenden Arbeit ergaben Western Blot-Analysen in neuralen Stammzellen (NSC) sowie spinalen Motoneuronen in vitro eine Steigerung der SMN-Proteinexpression durch 8-CPT-cAMP. Zur Untersuchung der Auswirkungen der erh{\"o}hten SMN-Proteinmenge auf die Pathologie der Motoneurone wurde ein in-vitro-Assay entwickelt, mit dessen Hilfe gezeigt werden konnte, dass eine Behandlung mit 100 µM 8-CPT-cAMP die axonalen Ver{\"a}nderungen isolierter embryonaler Smn-defizienter Motoneurone kompensieren kann. Motoneurone von 14 Tage alten Smn-defizienten und Kontroll-Mausembryonen wurden {\"u}ber sieben Tage hinweg auf einer Matrix aus Poly-Ornithin und Laminin-111 bzw. Laminin-121/221 kultiviert und mit 100µM cAMP und neurotrophen Faktoren behandelt. Nach Fixierung wurden die Zellen mit Antik{\"o}rpern gegen Islet-1/2, tau und beta-Aktin gef{\"a}rbt, mit Hilfe eines konfokalen Mikroskops fotografiert und digital vermessen. 8-CPT-cAMP erh{\"o}ht den beta-Aktin-Gehalt in den axonalen Wachstumskegeln von Smn-defizienten Motoneuronen. Die Gr{\"o}ße der Wachstumskegel nimmt durch die Behandlung um das 2-3fache zu und erreicht normale Werte. Auf Laminin-111 bleibt das L{\"a}ngenwachstum der Axone durch 100µM 8-CPT-cAMP unbeeinflusst, auf Laminin-121/221 wird das L{\"a}ngenwachstum normalisiert. Die beta-Aktin-Verteilung innerhalb der Axone und Wachstumskegel von Smn-defizienten Motoneuronen erscheint durch die cAMP-Behandlung nahezu normalisiert. Die Wiederherstellung der beta-Aktin-Verteilung in Wachstumskegeln durch cAMP kann große Auswirkungen auf die Funktionalit{\"a}t der Motoneurone haben. Die Ergebnisse sind m{\"o}glicherweise ein erster Schritt auf dem Weg zu einer Therapie f{\"u}r die Spinale Muskelatrophie.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Mayer2009, author = {Mayer, Christine Rita}, title = {Zyklisches AMP kompensiert morphologische und funktionelle Defekte in isolierten Smn-defizienten Motoneuronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die proximale spinale Muskelatrophie (SMA) ist eine autosomal rezessive Erb-krankheit, welche durch fortschreitende Muskelatrophie mit Betonung der pro-ximalen Extremit{\"a}ten, sowie zunehmende motorische L{\"a}hmungen charakterisiert wird. Bedingt wird diese neurodegenerative Erkrankung durch Mutation bzw. Deletion des SMN1-Gens auf Chromosom 5q13. Dies f{\"u}hrt zu reduzierten Mengen des ubiquit{\"a}r exprimierten SMN-Proteins, da der Verlust des SMN1-Gens nicht durch das noch verbleibende SMN2-Gen kompensiert werden kann. Die SMN-Promotor-Region enth{\"a}lt ein CRE II bindendes Element, welches Effekte von zyklischem Adenosinmonophosphat (cAMP) vermittelt und so die SMN-Transkription in untersuchten Zellen stimuliert. Ausgehend von diesem Befund stellte sich die Frage, ob cAMP dem Mangel an volll{\"a}ngen SMN bei der SMA entgegen wirkt. Daher wurden f{\"u}r diese Dissertation neurosph{\"a}renbildende kortikale Vorl{\"a}uferzellen und prim{\"a}r kultivierte Motoneuronen von Smn+/+; SMN2- und Smn-/-;SMN2-Mausembryonen untersucht, um zu kl{\"a}ren, ob die cAMP-Behandlung der Zellen zu einer Hochregulierung des SMN2-Transkripts f{\"u}hrt, und durch die resultierende Erh{\"o}hung des SMN-Proteingehalts morphologische und funktionelle Defekte kompensiert werden. Die Untersuchung zeigte eine signifikante Zunahme des SMN2-Transkriptgehalts in Anwesenheit von cAMP. Dadurch kam es zu einem Anstieg der SMN-Proteinmenge im Soma, Axon und Wachstumskegel von Smn-/-;SMN2-Motoneuronen. Die Verteilungs-st{\"o}rung des SMN-Interaktionspartners hnRNP R mit fehlender kontrolltypischer Anreicherung im distalen Axon und Wachstumskegel von Smn-/-;SMN2-Motoneuronen wurde ebenfalls durch cAMP kompensiert. Smn-defiziente Mo-toneurone zeigten im Vergleich zu Kontrollzellen kleinere Wachstumskegel sowie ein Defizit an \&\#946;-Aktin im distalen Axon. Zudem fehlte in Smn-/-;SMN2-Motoneuronen die bei Kontrollen ausgepr{\"a}gte Zusammenlagerung von N-Typ spezifischen Ca2+-Kan{\"a}len in der Pr{\"a}synapse, die nach Kontakt mit der \&\#946;2-Kette des endplattenspezifischen Laminin-221 spontan {\"o}ffnen und so einen in-trazellul{\"a}ren Kalziumanstieg bewirken, wodurch es zu Erregbarkeitsst{\"o}rungen und Axonelongationsdefekten bei Smn-defizienten Motoneuronen kommt. Die Behandlung der Smn-defizienten Motoneuronen mit cAMP f{\"u}hrte zur Vergr{\"o}ßerung der Wachstumskegelfl{\"a}che und zu einer im Verlauf des Axons zunehmenden Anf{\"a}rbung mit \&\#946;-Aktin. Außerdem kam es zu einer Erh{\"o}hung der Menge an Cav2.2-Kanalprotein in den Wachstumskegeln Smn-defizienter Motoneurone, was mit einer erh{\"o}hten Erregbarkeit korrelierte und zu einer Normalisierung der Axonl{\"a}nge von Smn-/-;SMN2-Motoneuronen auf Laminin-221 f{\"u}hrte. Die Ergebnisse dieser Arbeit lassen die Vermutung zu, dass Smn-defiziente Motoneurone in vivo Defekte im pr{\"a}synaptischen Bereich der Motorendplatte aufweisen. In Zukunft k{\"o}nnen mit dem beschriebenen in vitro Assay weitere Substanzen, welche die SMN2-Traskription stimulieren, auf ihr kompensatorisches Potential getestet werden.}, subject = {cAMP}, language = {de} } @phdthesis{Pelz2015, author = {Pelz, Jann-Patrick}, title = {Strukturbiologische Untersuchungen zur Chaperone-vermittelten Zusammenlagerung spleißosomaler U-snRNPs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116973}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Durch die Spleißreaktion werden nicht-kodierende Sequenzelemente (Introns) aus eukaryotischen Vorl{\"a}ufer-mRNAs entfernt und die kodierenden Sequenzelemente (Exons) miteinander zu einem offenen Leserahmen verbunden. Dieser zentrale Prozessierungsschritt w{\"a}hrend der eukaryotischen Genexpression wird durch das Spleißosom katalysiert, das aus den vier kleinen nukle{\"a}ren Ribonucleoproteinpartikeln (snRNPs) U1, U2, U4/U6 und U5, sowie einer Vielzahl weiterer Proteinfaktoren gebildet wird. Alle snRNPs besitzen eine gemeinsame ringf{\"o}rmige Kernstruktur, die aus sieben gemeinsamen Sm-Proteinen (SmB/B'-D1-D2-D3-E-F-G) besteht, die ein einzelstr{\"a}ngiges Sequenzmotiv auf der snRNAs binden. W{\"a}hrend sich diese, als Sm-Core-Dom{\"a}ne bezeichnete Struktur in vitro spontan ausbilden kann, erfolgt die Zusammenlagerung in vivo in einem assistierten und hochregulierten Prozess. Dieser ist abh{\"a}ngig von insgesamt mindestens 12 trans-agierenden Faktoren, die in den PRMT5- und SMN-Komplexen organisiert sind. Der PRMT5-Komplex agiert in der fr{\"u}hen Phase der Zusammenlagerung, indem er die Sm-Proteine durch die Untereinheit pICln rekrutiert und die symmetrische Methylierung von Argininresten in den C terminalen Schw{\"a}nzen von SmB/B', SmD1 und SmD3 katalysiert. Als Resultat dieser fr{\"u}hen Phase befinden sich die Sm-Proteine SmD1-D2-E-F-G und SmB/B'-D3 in zwei getrennten und durch pICln organisierten Komplexen. W{\"a}hrend SmB/B'-D3-pICln am PRMT5-Komplex gebunden bleibt, existiert der zweite Komplex als freies Intermediat mit einem Sedimentationskoeffizienten von 6S. Diese Intermediate k{\"o}nnen nicht mit RNA assoziieren, sodass f{\"u}r die Fortsetzung des Zusammenlagerungsprozesses die Interaktion der Sm-Proteine mit pICln aufgel{\"o}st werden muss. Dies geschieht in der sp{\"a}ten Phase der Sm-Core-Zusammenlagerung, in der die Sm-Proteine vom SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) {\"u}bernommen werden und pICln dissoziiert wird. Dadurch werden die Sm-Proteine f{\"u}r ihre Interaktion mit der snRNA aktiviert und k{\"o}nnen auf die Sm-Bindestelle transferiert werden, wodurch die Formierung des Sm-Core abgeschlossen wird. Im Rahmen dieser Arbeit konnten mit Hilfe einer Kombination r{\"o}ntgenkristallographischer und elektronenmikroskopischer Methoden zwei wichtige Intermediate dieses Zusammenlagerungs-prozesses strukturbiologisch charakterisiert werden. Bei diesen Intermediaten handelt es sich um den 6S-Komplex, sowie um ein Sm-Protein-Transferintermediat mit einem Sedimentations-koeffizienten von 8S. In diesem ist der 6S-Komplex an zwei zentrale Untereinheiten des SMN-Komplexes (SMN und Gemin2) gebunden, w{\"a}hrend pICln den Komplex noch nicht verlassen hat. Der 8S-Komplex stellt daher ein „gefangenes" Intermediat zwischen der fr{\"u}hen und sp{\"a}ten Phase der Zusammenlagerung dar. Zun{\"a}chst gelang es eine erste Kristallform des rekombinant hergestellten 8S-Komplexes zu erhalten, die jedoch keine Strukturl{\"o}sung erlaubte. Durch eine kombinierte Optimierung der Kristallisationsbedingung und der verwendeten Proteine wurde eine weitere {\"a}hnliche Kristallform erhalten, mit der die Kristallstruktur des 8S-Komplexes gel{\"o}st werden konnte. Die Kristallisation des 6S-Komplexes gelang im Anschluss auf Basis der Hypothese, dass Kristalle beider Komplexe aufgrund der kompositionellen Verwandtschaft zwischen 6S und 8S auch {\"A}hnlichkeiten in der Architektur ihrer Kristallgitter aufweisen k{\"o}nnten. Daher wurden innerhalb von pICln gezielt Aminos{\"a}uren substituiert, die sich innerhalb von Kristallkontakten der 8S-Kristalle befanden und konformationell eingeschr{\"a}nkt waren. Mit entsprechend rekonstituierten 6S-Pr{\"a}parationen konnten dann zwei Kristallformen erzeugt werden, die eine Strukturl{\"o}sung des 6S-Komplexes erm{\"o}glichten. Durch die Kristallstruktur des 6S-Komplexes konnte f{\"u}r pICln eine strukturelle Mimikry der Sm-Proteine identifiziert werden. Diese erm{\"o}glicht eine Bindung der Sm-Proteine und eine fr{\"u}hzeitige topologische Organisation des Sm-Pentamers D1-D2-F-E-G in einer geschlossenen hexameren Ringstruktur. Die Kristallstruktur des 8S-Komplexes zeigt, wie der SMN-Komplex {\"u}ber Gemin2 an das Sm-Pentamer bindet. In Kombination mit einer EM-Struktur des 8S-Komplexes gelang es weiterhin, einen plausiblen Mechanismus f{\"u}r die Elimination von pICln und die Aktivierung der Sm-Proteine f{\"u}r die snRNA-Bindung zu formulieren. Somit konnten diese Arbeiten zu einem besseren Verst{\"a}ndnis der Funktionen von trans-agierenden Faktoren bei Zusammenlagerung von RNA-Protein-Komplexen in vivo beitragen.}, subject = {Spleißosom}, language = {de} }