@phdthesis{Boehm2015, author = {B{\"o}hm, Jennifer}, title = {Die N{\"a}hrstoffresorption in den Fallen von Dionaea muscipula weist Parallelen zur N{\"a}hrsalzaufnahme in Wurzeln auf}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123958}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Venusfliegenfalle, Dionaea muscipula, weckte aufgrund ihrer karnivoren Lebensweise schon sehr fr{\"u}h das Interesse vieler Wissenschaftler. F{\"u}r karnivore Pflanzen, die auf N{\"a}hrstoff-armen B{\"o}den wachsen, spielen Insekten als Beute und somit als N{\"a}hrstofflieferant eine entscheidende Rolle. So k{\"o}nnen die Pflanzen durch die Verdauung der Beute mit wichtigen Makro- und Mikron{\"a}hrstoffen, wie Stickstoff, Phosphat, Kalium oder Natrium versorgt werden. Aus diesem Grund sollte im Rahmen meiner Arbeit ein besonderes Augenmerk auf die molekularen Mechanismen der Kationenaufnahme w{\"a}hrend der N{\"a}hrstoffresorption gerichtet werden. Insbesondere die aus dem Insekt stammenden N{\"a}hrstoffe Kalium und Natrium waren dabei von großem Interesse. Im Allgemeinen sind Kaliumionen f{\"u}r Pflanzen eine essentielle anorganische Substanz und von großer physiologischer Bedeutung f{\"u}r die Entwicklung, den Metabolismus, die Osmoregulation, das Membranpotential und viele zellul{\"a}re Prozesse. Analysen der Kaliumaufnahme an Wurzeln von Modellpflanzen wie Arabidopsis thaliana und Reis zeigten, dass die Aufnahme von K+ ein Zusammenspiel von hoch-affinen K+-Transportern der HAK5-Familie und nieder-affinen Kaliumkan{\"a}len (AKT1/AtKC1) erfordert, die in ein komplexes (De-)Phosphorylierungsnetzwerk eingebunden sind. In der vorliegenden Arbeit war es mir m{\"o}glich das Netzwerk zur Kaliumaufnahme in den Dr{\"u}sen der Venusfliegenfalle zu entschl{\"u}sseln. Es konnten Orthologe zum Kaliumtransporter HAK5 aus Arabidopsis (DmHAK5) und zum Kaliumkanal AKT1 (DmKT1) identifiziert und im heterologen Expressionssystem der Xenopus laevis Oozyten elektrophysiologisch charakterisiert werden. Dabei zeigte sich, das DmKT1 durch einen Ca2+-Sensor/Kinase-Komplex aus der CBL/CIPK-Familie phosphoryliert und somit aktiviert wird. Phylogenetische Analysen von DmKT1 best{\"a}tigten die Eingruppierung dieses Kaliumkanals in die Gruppe der pflanzlichen Shaker-Kaliumkan{\"a}le des AKT1-Typs. Die Transporteigenschaften zeigten zudem, dass DmKT1 bei hyperpolarisierenden Membranpotentialen aktiviert wird und einen K+-selektiven Einw{\"a}rtsstrom vermittelt. In Oozyten konnte eine Kaliumaufnahme bis zu einer externen Konzentration von ≥1 mM beobachtet werden. DmKT1 repr{\"a}sentiert also einen Kaliumkanal mit einer hohen Transportkapazit{\"a}t, der die nieder-affine Kaliumaufnahme in die Dr{\"u}senzellen der Venusfliegenfalle vermitteln kann. Unterhalb einer externen Kaliumkonzentration von 1 mM w{\"u}rde der anliegende elektrochemische Kaliumgradient einen Kaliumausstrom und somit einen Verlust von Kalium favorisieren. Hoch-affine K+/H+-Symporter k{\"o}nnen durch die Ausnutzung des Protonengradienten eine Kaliumaufnahme im mikromolaren Bereich gew{\"a}hrleisten. In Wurzelhaaren von Arabidopsis vermittelt der Transporter AtHAK5 die Kaliumaufnahme unter Kaliummangelbedingungen. DmHAK5, ein Ortholog zu AtHAK5, ist in Dionaea Dr{\"u}sen exprimiert und konnte zum ersten Mal im heterologen Expressionssystem der Xenopus Oozyten im Detail charakterisiert werden. Interessanterweise zeigte sich, dass DmHAK5 wie der K+-Kanal DmKT1 durch denselben CBL/CIPK-Komplex posttranslational reguliert und aktiviert wird. Die Transporteigenschaften von DmHAK5 wiesen auf einen Transporter mit einer breiten Substratspezifit{\"a}t hin, sodass sich DmHAK5 neben Kalium auch f{\"u}r Ammonium permeabel zeigte. Affinit{\"a}tsuntersuchungen von DmHAK5 zu seinem Substrat Kalium klassifizierten das Protein als einen hoch-affinen Kaliumtransporter, der im Symport mit Protonen die Kaliumaufnahme im mikromolaren Konzentrationsbereich vermitteln kann. Das Kaliumtransportmodul besteht also aus dem K+-selektiven Kanal DmKT1 und dem K+/H+-Symporter DmHAK5, die die hoch- und nieder-affine Kaliumaufnahme in den Dr{\"u}senzellen w{\"a}hrend der Beuteverdauung in Dionaea muscipula Fallen erm{\"o}glichen. Beide Transportmodule werden Kalzium-abh{\"a}ngig durch die Kinase CIPK23 und den Ca2+-Sensor CBL9 auf posttranslationaler Ebene reguliert. Zusammenfassend gelang es in dieser Arbeit Einblicke in die Kationenaufnahme w{\"a}hrend der N{\"a}hrstoffresorptionsphase der Venusfliegenfalle, Dionaea muscipula, zu gewinnen. Dabei wurde klar, dass Dionaea muscipula im Laufe ihrer Evolution zu einer karnivoren Pflanze, nicht neue Transportmodule zur N{\"a}hrstoffresorption aus der Beute entwickelte, sondern bekannte aus Wurzeln stammende Transportmodule umfunktionierte. Auf molekularer Ebene konnten die biophysikalischen Charakteristika der K+- und Na+-Transportproteine, sowie ihre Regulation entschl{\"u}sselt werden. Diese Erkenntnisse wurden schließlich in den Kontext des Beutefangs der Venusfliegenfalle gebracht und diskutiert.}, subject = {Venusfliegenfalle}, language = {de} } @phdthesis{Stange2010, author = {Stange, Annette}, title = {Beziehung zwischen Ca2+-Hom{\"o}ostase und Aktivit{\"a}t der S-Typ Anionenkan{\"a}le in Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52131}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Pflanzen regulieren ihren Gasaustausch mit der Atmosph{\"a}re, indem sie die {\"O}ffnungsweite von Poren in der Epidermis von Bl{\"a}ttern, sog. Stomata, ver{\"a}ndern. Bei Wassermangel werden die stomat{\"a}ren Poren geschlossen, um den Verlust von Wasser zu minimieren. Dieser Vorgang wird durch das Phytohormon ABA ausgel{\"o}st, welches eine Aktivierung von Anionenkan{\"a}len in der Plasmamembran der Schließzellen induziert. Obwohl die Aktivierung der Anionenkan{\"a}le ein zentrales Element in der ABA-Antwort darstellt, ist der Signalweg, der zu der Aktivierung der Anionenkan{\"a}le f{\"u}hrt, nur l{\"u}ckenhaft verstanden. Im Rahmen dieser Arbeit wurde die Rolle von Signalintermediaten wie Proteinkinasen, -phosphatasen, Lipid-abgeleiteten Botenstoffen und Ca2+ bei der Aktivierung der Anionenkan{\"a}le untersucht. Hinsichtlich Ca2+ lag ein spezieller Fokus auf der Generierung von Ca2+-Signalen und auf der Frage, inwieweit ein Anstieg in der cytosolischen freien Ca2+-Konzentration f{\"u}r eine Aktivierung der Anionenkan{\"a}le ausreicht. F{\"u}r diese Studien wurde haupts{\"a}chlich die Zwei-Elektroden-Spannungsklemm- (DEVC) Technik in Kombination mit Ca2+-Konzentrationsmessungen durch den Ca2+-sensitiven Farbstoff FURA-2 angewendet. Die M{\"o}glichkeit Anionenkan{\"a}le durch Ca2+ zu aktivieren wurde getestet, indem Ca2+-Signale in intakten Schließzellen von Nicotiana tabacum durch hyper- und depolarisierte Spannungen ausgel{\"o}st wurden und gleichzeitig die Str{\"o}me, die {\"u}ber die Plasmamembran flossen, gemessen wurden. Dabei f{\"u}hrte eine Hyperpolarisation zu einer transienten Erh{\"o}hung der cytosolischen freien Ca2+-Konzentration w{\"a}hrend des Spannungssprunges, wohingegen eine Depolarisation zun{\"a}chst eine Erniedrigung der cytosolischen freien Ca2+-Konzentration ausl{\"o}ste und das Ca2+-Signal bei Repolarisation der Plasmamembran auftrat. Dies weist darauf hin, dass in beiden F{\"a}llen hyperpolarisations-aktivierte Ca2+-Kan{\"a}le beteiligt sind, wobei das Schwellenpotential der Schließzellen, bei dem ein Ca2+-Signal ausgel{\"o}st wird, nach einer langen Depolarisation zu positiveren Spannungen verschoben ist. Die Modulation der Spannungssensitivit{\"a}t der Schließzellen w{\"a}hrend einer langen Depolarisation findet m{\"o}glicherweise durch eine Aktivierung der Ca2+-Kan{\"a}le und/oder eine Inhibierung verschiedener Ca2+-Transportproteine durch eine niedrige cytosolische freie Ca2+-Konzentration statt. Der durch Hyperpolarisation bzw. durch lange Depolarisation induzierte transiente Anstieg in der cytosolischen freien Ca2+-Konzentration korrelierte mit einer transienten Aktivierung von S-Typ Anionenkan{\"a}len. Die Analyse der Ca2+-Konzentrations- und Zeitabh{\"a}ngigkeit ergab, dass die S-Typ Anionenkan{\"a}le durch Ca2+ in einem schnellen Signalweg mit einer halbmaximalen cytosolischen freien Ca2+-Konzentration von 515 nM (SE=235, n=33) aktiviert werden. Der durchschnittliche maximale S-Typ Anionenstrom lag bei -349 pA (SE=107, n=33) bei einer Spannung von -100 mV. Die Wirkung von Ca2+ auf Transportvorg{\"a}nge {\"u}ber die Plasmamembran wurde auch in Dr{\"u}senzellen von Dionaea muscipula untersucht. In diesem Zelltyp induzierte eine mechanische Stimulierung der Triggerhaare ein Ca2+-Signal, wobei mehr als zwei Aktionspotentiale n{\"o}tig waren, um einen transienten Ca2+-Anstieg auszul{\"o}sen. Diese Daten zeigen, dass die Depolarisationsphase des Aktionspotentials in den Dr{\"u}sen nicht direkt mit Ca2+-Fl{\"u}ssen assoziiert ist. Anstelle einer Ca2+-abh{\"a}ngigen Aktivierung scheinen Anionenkan{\"a}le in Dr{\"u}sen von Dionaea muscipula also in einem Ca2+-unabh{\"a}ngigen Signalweg aktiviert zu werden. Diesen Aktivierungsmechanismus gibt es auch im ABA-Signalweg in Schließzellen. Dort findet eine Ca2+-unabh{\"a}ngige Aktivierung der S-Typ Anionenkan{\"a}le durch Proteinkinasen wie OST1 und CPK23 statt, wobei die Proteinphosphatase ABI1 als negativer Regulator diskutiert wird. In dieser Arbeit konnte die Redundanz von OST1 und CPK23 sowie Komponenten des Ca2+-abh{\"a}ngigen Weges in DEVC-Experimenten mit ost1-2- und cpk23-Mutanten von Arabidopsis thaliana beobachtet werden, die beide S-Typ Anionenkanalaktivit{\"a}t zeigten. Die Aktivit{\"a}t von S-Typ Anionenkan{\"a}len in Arabidopsis thaliana Mutanten, denen der S-Typ Anionenkanal SLAC1 fehlt, deutet außerdem an, dass redundante S-Typ Anionenkan{\"a}le vorhanden sind, die auch durch andere Proteinkinasen aktiviert werden k{\"o}nnten. ABA-induzierte S-Typ Anionenstr{\"o}me waren auch in abi1-Transformanten von Nicotiana tabacum messbar, wobei eine geringere Sensitivit{\"a}t gegen{\"u}ber ABA als im Wildtyp auftrat, was auf eine unvollst{\"a}ndige Inhibierung des ABA-Signalweges hindeutet. Die Redundanz der Intermediate im ABA-Signalweg war auch in Studien mit dem Lipid-abgeleiteten Botenstoff Phosphatids{\"a}ure sichtbar, der nur einen langsamen und unvollst{\"a}ndigen Stomaschluss induzierte, was allerdings auch auf eine untergeordnete Rolle von Phosphatids{\"a}ure im ABA-Signalweg hinweisen k{\"o}nnte.}, subject = {Schließzelle}, language = {de} }