@phdthesis{Halmen2021, author = {Halmen, Norbert}, title = {Vernetzungsgrad unter der Lupe : Zerst{\"o}rungsfreie Pr{\"u}fung mit unilateraler NMR}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-160-0}, doi = {10.25972/WUP-978-3-95826-161-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233506}, school = {W{\"u}rzburg University Press}, pages = {xv, 182}, year = {2021}, abstract = {Der Vernetzungsgrad von Klebstoffen und strahlenvernetzter Kunststoffformteile beeinflusst zahlreiche Materialeigenschaften und ist von essenzieller Bedeutung f{\"u}r die Funktionalit{\"a}t von Klebeverbindungen und die Best{\"a}ndigkeit medizinischer Implantate. Die zerst{\"o}rungsfreie Pr{\"u}fung dieser Qualit{\"a}tsgr{\"o}ße ist von großem industriellem Interesse, aber noch nicht Stand der Technik. Die unilaterale Kernspinresonanz (uNMR) ist ein vielversprechendes Verfahren zur L{\"o}sung dieser Problematik. In diesem Buch wird die nicht-invasive Vernetzungsgradpr{\"u}fung von strahlenvernetztem UHMWPE und verschiedenen Klebstoffen mittels uNMR demonstriert. Auf Basis der guten Korrelation mit praxisrelevanten Referenzmethoden (thermisch, rheologisch, dielektrisch) wurden Vergleichsmodelle entwickelt, welche Anwendern von Klebstoffen und vernetzten Kunststoffformteilen den Einsatz der uNMR zur zerst{\"o}rungsfreien Qualit{\"a}tssicherung erm{\"o}glichen.}, subject = {Magnetische Kernresonanz}, language = {de} } @phdthesis{Schielein2018, author = {Schielein, Richard}, title = {Analytische Simulation und Aufnahmeplanung f{\"u}r die industrielle R{\"o}ntgencomputertomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169236}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {R{\"o}ntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum m{\"o}glicher Pr{\"u}fobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schw{\"a}chungskoeffizienten der Objekte mit m{\"o}glichst großer Genauigkeit. Die Parametrierung eines CT-Systems f{\"u}r ein optimales Messergebnis h{\"a}ngt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit R{\"o}ntgenstrahlung des Objektes und des CT-Systems ber{\"u}cksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der M{\"o}glichkeit den Prozess zur Parametrierung anhand von G{\"u}temaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabh{\"a}ngigkeit ber{\"u}cksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende R{\"o}ntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es erm{\"o}glicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Dar{\"u}ber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition f{\"u}r die G{\"u}te eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des G{\"u}temaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert.}, subject = {Computertomografie}, language = {de} }