@phdthesis{Putics2006, author = {Putics, Akos}, title = {Enzymatische Aktivit{\"a}ten des coronaviralen nichtstrukturellen Proteins 3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19449}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Coronaviren k{\"o}nnen sowohl den Menschen als auch zahlreiche Tierspezies infizieren und verursachen vor allem respiratorische und enterale Erkrankungen. Die Replikation des etwa 27-32 kb großen, einzelstr{\"a}ngigen RNA-Genoms positiver Polarit{\"a}t und die Synthese zahlreicher subgenomischer RNAs erfolgt durch einen Multi-Enzym-Komplex, der bis zu 16 virale nichtstrukturelle Proteine (nsp) und einige zellul{\"a}re Proteine umfaßt. Die einzelnen nichtstrukturellen Proteine werden durch proteolytische Prozessierung der vom Replikasegen kodierten Vorl{\"a}ufer-Polyproteine (pp1a/pp1ab) unter Beteiligung viraler Proteasen freigesetzt. Das gr{\"o}ßte replikative Protein, nsp3, befindet sich im aminoterminalen Bereich der Polyproteine pp1a/pp1ab. Trotz des geringen Konservierungsgrades dieser Region wurden bestimmte funktionelle Dom{\"a}nen, die in allen coronaviralen nsp3 konserviert sind, identifiziert. Dazu geh{\"o}ren: eine saure Dom{\"a}ne, zwei Papain-{\"a}hnliche Proteasen (PL1pro und PL2pro) sowie zwei weitere konservierte Dom{\"a}nen (X- bzw. Y-Dom{\"a}ne). Fr{\"u}here Studien konzentrierten sich vor allem auf die PLpro-Dom{\"a}nen, w{\"a}hrend die Funktionen der anderen nsp3-Dom{\"a}nen bisher nicht untersucht wurden. Um weitere Einblicke in die nsp3-vermittelten Aktivit{\"a}ten und ihre Funktionen im coronaviralen Lebenszyklus zu gewinnen, wurden im Rahmen dieser Arbeit die enzymatischen Aktivit{\"a}ten von zwei nsp3-Dom{\"a}nen, PLpro und X, n{\"a}her charakterisiert. Coronavirale Papain-{\"a}hnliche Proteasen spalten den aminoproximalen Bereich der Polyproteine pp1a/pp1ab und sind somit an der Freisetzung von nsp1, nsp2 und nsp3 beteiligt. In der vorliegenden Arbeit wurde die durch die PLpro vermittelte proteolytische Prozessierung des N-terminalen Endes von nsp3 bei TGEV und SARS-CoV analysiert. {\"U}bereinstimmend mit fr{\"u}heren Vorhersagen ergaben In-vitro-Translationsexperimente und Proteinsequenzierungen, dass die TGEV-PL1pro die Peptidbindung zwischen Gly879 und Gly880 spaltet, wodurch das aminoterminale Ende von nsp3 bzw. das carboxyterminale Ende von nsp2 freigesetzt werden. Diese Schnittstelle entpricht bei SARS-CoV der Sequenz Gly818|Ala819, die jedoch bei diesem Virus von der PL2pro prozessiert wird. Mutationsanalysen ergaben weiterhin, dass die Reste Cys1093 (TGEV-PL1pro) und Cys1651 (SARS-CoV-PL2pro) f{\"u}r die proteolytische Aktivit{\"a}t essentiell sind. Diese Daten st{\"u}tzen Vorhersagen zu m{\"o}glichen katalytischen (nukleophilen) Funktionen dieser beiden Reste. Dar{\"u}ber hinaus wurde das stromaufw{\"a}rts gelegene nsp2 in TGEV-infizierten Zellen identifiziert. Diese Daten, zusammen mit vorherigen Studien, legen den Schluss nahe, dass die Coronavirus-PLpro-vermittelte proteolytische Prozessierung -trotz der geringen Konservierung des Polyproteinsubstrates und bestehender Unterschiede hinsichtlich der Anzahl konservierter PLpro-Dom{\"a}nen- weitgehend konserviert ist. Im zweiten Teil der Arbeit sollte die enzymatische Aktivit{\"a}t einer weiteren konservierten Dom{\"a}ne im coronaviralen nsp3, der sogenannten X-Dom{\"a}ne, untersucht werden. F{\"u}r diese Dom{\"a}ne war eine ADP-Ribose-1"-Monophosphatase-Aktivit{\"a}t (Appr-1"-pase) vorhergesagt worden. Um die Eigenschaften dieser Proteine n{\"a}her zu bestimmen und m{\"o}glicherweise existierende Gemeinsamkeiten zwischen coronaviralen Enzymen, die den viralen Lebenszyklus steuern und/oder kontrollieren, zu identifizieren, wurden die X-Dom{\"a}nen von drei verschiedenen Coronaviren, HCoV-229E, TGEV und SARS-CoV, die unterschiedlichen serologischen Coronavirus-Gruppen angeh{\"o}ren, in vitro untersucht und miteinander verglichen. Es konnte gezeigt werden, dass bakteriell (E.coli-) exprimierte X-Dom{\"a}nen aller drei untersuchten Viren ADP-Ribose-1"-Phosphat, ein Nebenprodukt des zellul{\"a}ren tRNA-Splicings, zu ADP-Ribose dephosphorylieren k{\"o}nnen. Diese Daten beweisen zweifelsfrei die Appr-1"-pase-Aktivit{\"a}t coronaviraler X-Dom{\"a}nen und lassen vermuten, dass diese Aktivit{\"a}t bei allen Coronaviren konserviert ist. Weitere Untersuchungen zur Substratspezifit{\"a}t und zu m{\"o}glichen katalytischen Resten des Enzyms wurden mit Hilfe bakteriell exprimierter, mutierter Formen der HCoV-229E-X-Dom{\"a}ne durchgef{\"u}hrt. Die gewonnenen Daten legen die Vermutung nahe, dass die Phosphohydrolaseaktivit{\"a}t hochspezifisch f{\"u}r das Substrat Appr-1"-p ist und die HCoV-229E-pp1a/pp1ab-Reste Asn1302, Asn1305, His1310, Gly1312 und Gly1313 an der Ausbildung des aktiven Zentrum des Enzyms beteiligt sind. Abschließend wurde die Funktion der Appr-1"-pase-Aktivit{\"a}t mit Hilfe einer HCoV-229E-Mutante, in der die Appr-1"-pase-Aktivit{\"a}t durch ortsspezifische Mutagenese ausgeschaltet wurde, in Zellkultur analysiert. {\"U}berraschenderweise hatte die Mutation keine nachweisbare Auswirkung auf die virale RNA-Synthese oder den Virustiter, und sie erwies sich auch nach sechs Passagen in Zellkultur als stabil. Die Tatsache, dass die Appr-1"-pase-Aktivit{\"a}t f{\"u}r die Replikation und Transkription von HCoV-229E entbehrlich ist, zeigt, dass Coronavirus-Replikasegene auch nichtessentielle Funktionen kodieren, die m{\"o}glicherweise akzessorische und/oder regulatorische Funktionen besitzen und nur unter bestimmten Bedingungen (z.B. im infizierten Wirt) einen Selektionsvorteil bieten bzw. essentiell sind. Weitere Studien sind erforderlich, um die biologische Funktion der X-Dom{\"a}ne im Detail zu bestimmen.}, subject = {Coronaviren}, language = {de} }