@phdthesis{Fischer2014, author = {Fischer, Peter}, title = {Untersuchungen zum Einfluss der Anzahl primordialer Keimzellen auf die Geschlechtsbestimmung von Medaka, Oryzias latipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106846}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die primordialen Keimzellen (PGCs) sind die einzigen Zellen des Embryos, die die genetische Information von einer Generation an die n{\"a}chste weiter geben k{\"o}nnen. Es wurde gezeigt, dass in allen bislang untersuchten Knochenfischen die Anzahl der Urgeschlechtszellen w{\"a}hrend der Embryonalentwicklung der erste sichtbare Unterschied zwischen M{\"a}nnchen und Weibchen ist. Daraus ergibt sich die Frage, ob die Anzahl der primordialen Keimzellen das Geschlecht bestimmt, oder ob die somatischen Zellen je nach sexueller Identit{\"a}t die Urgeschlechtszellen zur Proliferation anregen. Um zu untersuchen, wie die Anzahl der Urgeschlechtszellen mit der Geschlechtsdetermination zusammenh{\"a}ngt, habe ich in dieser Arbeit die Anzahl der Urgeschlechtszellen manipuliert und deren Schicksal im Verlauf der Embryonalentwicklung verfolgt. Weiterhin untersuchte ich, in wieweit die Temperatur einen Einfluss auf die Geschlechtsbestimmung hat und ob sie Auswirkungen auf die Anzahl und die Wanderung der Urgeschlechtszellen hat beim Medaka hat. Durch meine Experimente, in denen ich die Fische w{\"a}hrend der Embryonalentwicklung bei verschiedenen Temperaturen hielt, konnte ich zeigen, dass beim Medaka der genetische Geschlechtsbestimmungsmechanismus durch erh{\"o}hte Temperatur {\"u}berschrieben werden kann. Die Temperaturerh{\"o}hung in der Embryonalentwicklung f{\"u}hrt zu einer Weibchen­-zu­-M{\"a}nnchen Geschlechtsumkehr. Dabei wird die Anzahl der primordialen Keimzellen im Vergleich zu den Kontrollen reduziert. Zudem wird durch die h{\"o}here Temperatur das autosomale dmrt1a viel fr{\"u}her angeschaltet, wa sauf einen alternativenSignalweg deutet, der die m{\"a}nnliche Geschlechtsentwicklung in XX geschlechtsumgewandelten Tieren steuert.}, subject = {Geschlechtsbestimmung}, language = {de} } @phdthesis{Schultheis2007, author = {Schultheis, Christina}, title = {Die geschlechtsbestimmende Region des Platyfisches Xiphophorus maculatus auf den Geschlechtschromosomen X und Y: Molekulare Analyse der genomischen Struktur und molekulargenetische Untersuchung von Genkandidaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25170}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Mit {\"u}ber 24.000 Arten sind etwa die H{\"a}lfte aller heute lebenden Wirbeltiere Fische. Im Gegensatz zu V{\"o}geln oder S{\"a}ugetieren weisen Fische eine erstaunliche Vielfalt und Variabilit{\"a}t der Geschlechtsbestimmungsmechanismen auf. S{\"a}mtliche Formen von Zwittrigkeit sowie umweltbedingte und genetische Geschlechtsbestimmung sind beschrieben worden. Die molekularen Grundlagen der genetischen Geschlechtsbestimmung bei Fischen sind jedoch weitgehend unbekannt. F{\"u}r einige Fischarten, wie etwa der Zebrafisch, die beliebte Modellorganismen zur Untersuchung z.B. von Krankheiten sind, liegen bereits sequenzierte Genome vor. Dennoch sind diese Modellorganismen aufgrund bisher nicht identifizierbarer Geschlechtschromosomen oder fehlender geschlechtsgebundener molekularer Marker als Modellorganismen zur Untersuchung der genetischen Geschlechtsbestimmung und der Evolution der Geschlechtschromosomen ungeeignet. Bei Stichling und Medaka, ebenfalls Fische mit vollst{\"a}ndig sequenzierten Genomen, konnte hingegen die geschlechtsbestimmende Region identifiziert werden. Im Medaka ist bereits das geschlechtsbestimmende Gen identifiziert worden, eine Y-spezifische Kopie des Gens dmrt1. Dmrt1bY konnte aber lediglich in einigen Medaka Arten nachgewiesen werden und stellt somit keinesfalls das universelle geschlechtsbestimmende Gen der Fische dar. Da die geschlechtsbestimmenden Regionen von Medaka und Stichling evolution{\"a}r gesehen relativ jung und linienspezifisch sind, spiegeln sie nur begrenzt den evolution{\"a}ren Verlauf der Entstehung von Geschlechtschromosomen und Geschlechtsbestimmungsmechanismen wider. Der Platyfisch Xiphophorus maculatus ist ein hervorragender Modellorganismus zur Untersuchung der Geschlechtsbestimmung und Evolution von Geschlechtschromosomen. Er wird seit Ende 1920 zur Untersuchung von malignen Melanomen verwendet. Interspezifische Hybride bilden durch die kreuzungsbedingte Aktivierung eines Tumorlocus erbliche Melanome aus. Der Tumorlocus konnte bereits molekular identifiziert werden. Er entspricht dem Onkogen Xmrk, das durch eine Xiphophorus-spezifische Duplikation des Protoonkogens egfrb gebildet worden ist. Onkogen und Protoonkogen, die beide f{\"u}r epidermale Wachstumsfaktorrezeptoren codieren, befinden sich in der Subtelomerregion auf den Geschlechtschromosomen des Platyfisches. Sie flankieren die etwa 1 Mb große geschlechtsbestimmende Region. Neben dem geschlechtsbestimmenden Locus sind verschiedene pigmentzelldefinierende Loci in dieser Region vorzufinden. Die Geschlechtschromosomen X und Y des Platyfisches sind sehr homolog, lassen sich aber sowohl cytogenetisch als auch genetisch gut voneinander unterscheiden. Zur Untersuchung der genetischen Struktur der geschlechtsbestimmenden Region und zur Identifizierung des geschlechtsbestimmenden Gens mittels positioneller Klonierung, wurde eine artifizielle Bakterienchromosom-(BAC) Bibliothek aus m{\"a}nnlichen Platyfischen (Genotyp XY) angelegt. Onkogen und Protoonkogen sowie verschiedene andere X- und Y-chromosomale molekulare Marker wurden als Startpunkte f{\"u}r „Chromosomen-Walking" und den Aufbau von X- und Y-chromosomalen artifizielle Bakterienchromosom (BAC)-Contigs verwendet. Hauptaufgabe meiner Doktorarbeit war die Erweiterung und physikalische Verkn{\"u}pfung verschiedener X- und Y-chromosomaler Contigs mittels molekularbiologischer und cytogenetischer Methoden sowie die Identifizierung von Genen mittels Bioinformatik und funktioneller Analyse. Bis zum jetzigen Zeitpunkt decken die BAC-Contigs 3,1 Mb auf dem Y-Chromosom und 3,8 Mb auf dem X-Chromosom in der geschlechtsbestimmenden Region ab. Sie stellen mitunter die gr{\"o}ßten geschlechtschromosomalen Contigs bei Fischen dar. Die X- und Y-chromosomalen Contigs werden derzeit in Kollaboration mit dem Sequenzierungszentrum Genoscope in Frankreich komplett durchsequenziert. Erste Sequenzanalysen weisen auf eine molekulare Differenzierung zwischen den X- und Y-Geschlechtschromosomen in der geschlechtsbestimmenden Region hin. Es konnten ein duplizierter Bereich auf dem Y Chromosom sowie eine Inversion in der geschlechtsbestimmenden Region identifiziert werden. Nichthomologe Rekombinationsereignisse zwischen transponierbaren Elementen und wiederholende Sequenzen sind mutmaßlich an dieser molekularen Umordnung beteiligt. Solche transponierbaren und sich wiederholenden Elemente akkumulieren in der geschlechtsbestimmenden Region und erschwerten auch maßgeblich Aufbau und Ausweitung der geschlechtschromosomalen Contigs. W{\"a}hrend die meisten Elemente auf beiden Geschlechtschromosomen zu finden sind, konnten auch Y-spezifische Kopien nachgewiesen werden, wie beispielsweise der endogene Retrovirus foamy. Eine Reihe von Genkandidaten wurden in der geschlechtsbestimmenden Region identifiziert. Einige stellen aussichtsreiche Kandidaten f{\"u}r den geschlechtsbestimmenden Locus dar. So ist das Gen fredi, das f{\"u}r einen putativen Transkriptionsfaktor mit Helix-Turn-Helix Motiv codiert, im Hoden stark exprimiert. Verschiedene fredi Kopien sind auf dem X und Y Chromosom in der geschlechtsbestimmenden Region identifiziert worden. Interessanterweise ist die codierende Sequenz der X-chromosomalen fredi Kopien durch ein transponierbares Element zerst{\"o}rt. Die Y-chromosomalen Kopien sind hingegen scheinbar nicht beeintr{\"a}chtigt. Zwei weitere miteinander verwandter Genkandidaten namens fah und tan, die bislang f{\"u}r Genprodukte mit unbekannten Eigenschaften codieren, liegen nebeneinander in der geschlechtsbestimmenden Region vor. Expressionsanalysen beider Gene weisen eine spezifische Expression im Ovar und zwar in der vegetativen Hemisph{\"a}re der Oocyten auf. Orthologe Gene wurden in Medaka und Zebrafisch identifiziert und kloniert. Expressionsanalysen in Medaka zeigten eine Ovar-spezifische Transkription wie in Xiphophorus, w{\"a}hrend im Zebrafisch fah und tan ubiquit{\"a}r exprimiert sind. Interessanterweise konnte im Platyfisch eine Spleißvariante von fah identifiziert werden, die auch im Hoden exprimiert ist. Dies macht fah zu einem vielversprechenden Kandidaten f{\"u}r den geschlechtsbestimmenden Locus. Die genomischen Regionen, in der fah und tan bei anderen Fischarten wie Medaka, Zebrafisch und Kugelfisch identifiziert wurden, zeigen hohe Syntenie zur geschlechtsbestimmenden Region des Platyfisches und k{\"o}nnten auch bei diesen Fischarten eine Rolle in der Geschlechtsbestimmung spielen. Ein einziges Gen, das mit fah und tan verwandt ist, konnte auch in Maus, Huhn und Frosch nachgewiesen werden. Interessanterweise konnte auf dem menschlichen X-Chromosom eine mit Stoppcodons durchzogene, zu fah/tan homologe Pseudogene Sequenz identifiziert werden. Diese Syntenie zwischen Geschlechtschromosomen von Fischen und S{\"a}ugern k{\"o}nnte auf eine evolution{\"a}r sehr alte geschlechtsbestimmende Region der Wirbeltiere hindeuten. Zusammenfassend hat diese Arbeit neben neuen Erkenntnissen {\"u}ber die Evolution der Geschlechtschromosomen bei Fischen verschiedene Genkandidaten f{\"u}r den geschlechtsbestimmenden Locus geliefert, die nun auch funktionell analysiert werden m{\"u}ssen.}, subject = {Geschlechtsbestimmung}, language = {de} }