@phdthesis{Zimmermann2006, author = {Zimmermann, J{\"o}rg}, title = {Optische Wellenleiter und Filter in photonischen Kristallen auf Indiumphosphid-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21767}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Im Rahmen dieser Arbeit wurden optische Wellenleiter und Filter in zweidimensionalen photonischen Kristallen auf Indiumphosphid-Basis hergestellt, numerisch modelliert sowie experimentell im f{\"u}r die optische Nachrichtentechnik wichtigen Wellenl{\"a}ngenbereich um 1,55 µm untersucht. Photonische Kristalle weisen eine periodische Variation des Brechungsindex auf. Durch das gezielte Einbringen von Defekten in die periodische Struktur ist eine Manipulation der photonischen Zustandsdichte und somit der Lichtausbreitung m{\"o}glich. Grundbaustein der durchgef{\"u}hrten Untersuchungen ist der lineare Defektwellenleiter in einem triangul{\"a}ren Gitter aus Luftl{\"o}chern in einer Halbleitermatrix, der durch das Auslassen von einer oder mehreren Lochreihen entsteht. Die Wellenf{\"u}hrung in vertikaler Richtung wird durch eine Halbleiterheterostruktur mit einer Wellenleiterkernschicht aus InGaAsP oder InGaAlAs und Mantelschichten mit niedrigerem Brechungsindex realisiert. Die Einbettung des zweidimensionalen Lochgitters in die InP-basierte Halbleiterheterostruktur erlaubt die Integration mit aktiven optoelektronischen Bauteilen wie Sende- und Empfangselementen sowie die Verwendung bestehender Halbleiterstrukturierungstechnologien. Die photonischen Kristall-Wellenleiter wurden mit hochaufl{\"o}sender Elektronenstrahllithographie und einem zweistufigen Trocken{\"a}tzprozess hergestellt. Damit konnten Lochradien von 100 nm und Lochtiefen von 4 µm realisiert werden. Zur experimentellen Untersuchung der hergestellten Strukturen wurden Messpl{\"a}tze f{\"u}r die optische Charakterisierung von Transmission und chromatischer Dispersion von photonischen Kristall-Wellenleitern und -Filtern aufgebaut und die Phasenverschiebungsmethode sowie die Modulationsmethode mit Offset angewendet. Damit konnte erstmals direkt die Gruppenlaufzeitdispersion eines photonischen Kristall-Wellenleiter-Filters gemessen werden. Numerische Untersuchungen wurden mit dem Verfahren der Entwicklung nach ebenen Wellen sowie mit dem FDTD-Verfahren durchgef{\"u}hrt. Die photonischen Kristall-Wellenleiter besitzen mehrere Wellenleitermoden, die teilweise refraktiven (auf Totalreflexion beruhenden) und teilweise diffraktiven (auf Bragg-Reflexion beruhenden) Charakter haben. Je nach Symmetrie treten zwischen den Moden Ministoppb{\"a}nder auf, die sich im Transmissionsspektrum als Intensit{\"a}tseinbr{\"u}che darstellen. Die spektrale Lage dieser Ministoppb{\"a}nder h{\"a}ngt von der Wellenleitergeometrie ab. Messungen an Wellenleitern mit verschiedener L{\"a}nge zeigen eine starke Variation der spektralen Breite der Ministoppb{\"a}nder. Diese kann mit der Theorie der gekoppelten Moden unter Annahme unterschiedlicher D{\"a}mpfungswerte f{\"u}r die gekoppelten Wellenleitermoden erkl{\"a}rt werden. Die entscheidene Wellenleitereigenschaft f{\"u}r praktische Anwendungen ist die Wellenleiterd{\"a}mpfung. Diese wurde mit den Verfahren der Fabry-P{\´e}rot-Resonanzen sowie der L{\"a}ngenvariation experimentell bestimmt. Durch Wahl eines geeigneten Schichtaufbaus und Optimierung der Herstellungsprozesse konnten die f{\"u}r das untersuchte Materialsystem niedrigsten D{\"a}mpfungswerte in photonischen Kristall-Wellenleitern erzielt werden. F{\"u}r W7-, W5- und W3-Wellenleiter wurden D{\"a}mpfungswerte von 0,2 dB/mm, 0,6 dB/mm und 1,5 dB/mm erreicht, die schmaleren W1-Wellenleiter zeigen Verluste von 27 dB/mm. Zwei Typen optischer Wellenleiter-Filter wurden untersucht: Richtkoppler sowie Resonatoren. Photonische Kristall-Wellenleiter-Richtkoppler eignen sich als ultrakompakte Demultiplexer und Kanal-Auslasser. Bei den experimentell realisierten photonischen Kristall-Wellenleiter-Richtkopplern konnte das eingekoppelte Licht je nach Wellenl{\"a}nge in den einen oder anderen Ausgangswellenleiter gelenkt werden. Bei photonischen Kristall-Wellenleitern mit Resonatoren konnten G{\"u}te-Faktoren bis zu 1,5*10^4 bei einem Kanalabstand von 100 GHz realisiert werden. Die Gruppenlaufzeitdispersion in diesen Strukturen variiert zwischen -250 ps/nm und +250 ps/nm, so dass mit einem 420 µm langen photonischen Kristall-Wellenleiter-Filter die Dispersion von 15 km Standardglasfaser bei 1,55 µm Wellenl{\"a}nge kompensiert werden kann. Mit Hilfe von kleinen Temperatur{\"a}nderungen kann die Resonanzkurve verschoben werden. Der demonstrierte photonische Kristall-Wellenleiter-Resonator stellt daher einen miniaturisierten durchstimmbaren Dispersionskompensator dar.}, subject = {Photonischer Kristall}, language = {de} } @phdthesis{Beetz2014, author = {Beetz, Johannes}, title = {Herstellung und Charakterisierung von Halbleiterbauelementen f{\"u}r die integrierte Quantenphotonik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung quantenphotonischer Komponenten, welche f{\"u}r eine monolithische Integration auf einem Halbleiter-Chip geeignet sind. Das GaAs-Materialsystem stellt f{\"u}r solch einen optischen Schaltkreis die ideale Plattform dar, weil es flexible Einzelphotonenquellen bereith{\"a}lt und mittels ausgereifter Technologien auf vielf{\"a}ltige Weise prozessiert werden kann. Als Photonenemitter werden Quantenpunkte genutzt. Man kann sie mit komplexen Bauelementen kombinieren, um ihre optischen Eigenschaften weiter zu verbessern. Im Rahmen dieser Arbeit konnte eine erh{\"o}hte Effizienz der Photonenemission beobachtet werden, wenn Quantenpunkte in Wellenleiter eingebaut werden, die durch photonische Kristalle gebildet werden. Die reduzierte Gruppengeschwindigkeit die diesem Effekt zugrunde liegt konnte anhand des Modenspektrums von kurzen Wellenleitern nachgewiesen werden. Durch zeitaufgel{\"o}ste Messungen konnte ermittelt werden, dass die Zerfallszeit der spontanen Emission um einen Faktor von 1,7 erh{\"o}ht wird, wenn die Emitter zur Mode spektrale Resonanz aufweisen. Damit verbunden ist eine sehr hohe Modeneinkopplungseffizienz von 80\%. Das Experiment wurde erweitert, indem die zuvor undotierte Membran des Wellenleiters durch eine Diodenstruktur ersetzt und elektrische Kontakte erg{\"a}nzt wurden. Durch Anlegen von elektrischen Feldern konnte die Emissionsenergie der Quantenpunkte {\"u}ber einen weiten spektralen Bereich von etwa 7meV abgestimmt werden. Das Verfahren kann genutzt werden, um die exzitonischen Quantenpunktzust{\"a}nde in einen spektralen Bereich der Wellenleitermode mit besonders stark reduzierter Gruppengeschwindigkeit zu verschieben. Hierbei konnten f{\"u}r Purcell-Faktor und Kopplungseffizienz Bestwerte von 2,3 und 90\% ermittelt werden. Mithilfe einer Autokorrelationsmessung wurde außerdem nachgewiesen, dass die Bauelemente als Emitter f{\"u}r einzelne Photonen geeignet sind. Ein weiteres zentrales Thema dieser Arbeit war die Entwicklung spektraler Filterelemente. Aufgrund des selbstorganisierten Wachstums und der großen r{\"a}umlichen Oberfl{\"a}chendichte von Quantenpunkten werden von typischen Anregungsmechanismen Photonen mit einer Vielzahl unterschiedlicher Energien erzeugt. Um die Emission eines einzelnen Quantenpunktes zu selektieren, muss der Transmissionsbereich des Filters kleiner sein als der Abstand zwischen benachbarten Spektrallinien. Ein Filter konnte durch die Variation des effektiven Brechungsindex entlang von indexgef{\"u}hrten Wellenleitern realisiert werden. Es wurde untersucht wie sich die optischen Eigenschaften durch strukturelle Anpassungen verbessern lassen. Ein weiterer Ansatz wurde mithilfe photonischer Kristalle umgesetzt. Es wurde gezeigt, dass der Filter hierbei eine hohe G{\"u}te von 1700 erreicht und gleichzeitig die Emission des Quantenpunkt-Ensembles abgetrennt werden kann. Die Bauelemente wurden so konzipiert, dass die im photonischen Kristall gef{\"u}hrten Moden effizient in indexgef{\"u}hrte Stegwellenleiter einkoppeln k{\"o}nnen. Ein Teil dieser Arbeit besch{\"a}ftigte sich zudem mit den Auswirkungen von anisotropen Verspannungen auf die exzitonischen Zust{\"a}nde der Quantenpunkte. Besonders starke Verspannungsfelder konnten induziert werden, wenn der aktive Teil der Bauelemente vom Halbleitersubstrat abgetrennt wurde. Dies wurde durch ein neu entwickeltes Fabrikationsverfahren erm{\"o}glicht. Infolgedessen konnten die Emissionsenergien reversibel um mehr als 5meV abgestimmt werden, ohne dass die optischen Eigenschaften signifikant beeintr{\"a}chtigt wurden. Die auf den aktiven Teil der Probe wirkende Verspannung wurde durch die Anwendung verschiedener Modelle abgesch{\"a}tzt. Dar{\"u}berhinaus wurde gezeigt, dass durch Verspannungen der spektrale Abstand zwischen den Emissionen von Exziton und Biexziton gezielt beeinflusst werden kann. Die Kontrolle dieser exzitonischen Bindungsenergie kann f{\"u}r die Erzeugung quantenmechanisch verschr{\"a}nkter Photonen genutzt werden. Dieses Ziel kann auch durch die Reduzierung der Feinstrukturaufspaltung des Exzitons erreicht werden. Die experimentell untersuchten Quantenpunkte weisen Feinstrukturaufspaltungen in der Gr{\"o}ßenordnung von 100meV auf. Durch genau angepasste Verspannungsfelder konnte der Wert erheblich auf 5,1meV verringert werden. Beim Durchfahren des Energieminimums der Feinstrukturaufspaltung wurde eine Drehung der Polarisationsrichtung um nahezu 90° beobachtet. Desweiteren wurde ein Zusammenhang des Polarisationsgrades mit der Feinstrukturaufspaltung nachgewiesen. Es wurde ein weiterer Prozessablauf entworfen, um komplexe Halbleiterstrukturen auf piezoelektrische Elemente {\"u}bertragen zu k{\"o}nnen. Damit war es m{\"o}glich den Einfluss der Verspannungsfelder auf Systeme aus Quantenpunkten und Mikroresonatoren zu untersuchen. Zun{\"a}chst wurde demonstriert, dass die Modenaufspaltung von Mikros{\"a}ulenresonatoren reversibel angepasst werden kann. Dies ist ebenfalls von Interesse f{\"u}r die Erzeugung polarisationsverschr{\"a}nkter Photonen. An Resonatoren aus photonischen Kristallen konnte schließlich gezeigt werden, dass das Verh{\"a}ltnis der spektralen Abstimmbarkeiten von exzitonischen Emissionslinien und Resonatormode etwa f{\"u}nf betr{\"a}gt, sodass beide Linien in Resonanz gebracht werden k{\"o}nnen. Dieses Verhalten konnte zur Beeinflussung der Licht-Materie-Wechselwirkung genutzt werden.}, subject = {Galliumarsenid-Bauelement}, language = {de} }