@phdthesis{Glinka2011, author = {Glinka, Michael}, title = {Charakterisierung der Rolle des β-Aktin mRNA bindenden Proteins heterogenous nuclear ribonucleoprotein-R f{\"u}r das Axonenwachstum von Motoneuronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57410}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bei Yeast Two-Hybrid Untersuchungen wurde in unserer Arbeitsgruppe das RNA-Bindungsprotein hnRNP-R als Interaktionspartner von SMN gefunden und es konnte gezeigt werden, dass hnRNP-R mit SMN in Axonen von prim{\"a}ren Motoneuronen kolokalisiert (Rossoll et al., 2002). hnRNP-R assoziiert mit der β-Aktin mRNA und nach {\"U}berexpression kommt es zu einer Akkumulation von β-Aktin in den Wachstumskegeln von neuronalen Zellen, sowie zu verst{\"a}rktem Neuritenwachstum bei PC12 Zellen. Wird die SMN-Bindungsdom{\"a}ne von hnRNP-R deletiert, ist dieser Effekt stark reduziert (Rossoll et al., 2003). Auf diesen in vitro Befunden ist die Hypothese begr{\"u}ndet, dass hnRNP-R an der Translokation der β-Aktin mRNA in die Wachstumskegel von neuronalen Zellen beteiligt ist. Deshalb wurde im Rahmen dieser Arbeit die Rolle von hnRNP-R bei der Entwicklung in Neuronen des Nervensystems n{\"a}her untersucht. Dazu wurden Zebrafisch Embryonen als in vivo Modellsystem f{\"u}r Morpholino vermittelte Knockdown Untersuchungen gew{\"a}hlt. Zun{\"a}chst wurde ein gegen murines Protein hergestelltes hnRNP-R Antiserum charakterisiert und gezeigt, dass es das Zebrafisch Protein spezifisch erkennt. Dieses Antiserum wurde in Western Blot Analysen verwendet um den hnRNP-R Knockdown in Zebrafisch Embryonen zu verifizieren. Bei den hnRNP-R Morpholino injizierten Embryonen konnten dosisabh{\"a}ngig axonale Ver{\"a}nderungen beobachtet werden. Diese Ver{\"a}nderungen stimmen mit einem Krankheitsmodell f{\"u}r SMA im Zebrafisch {\"u}berein. Es konnte gezeigt werden, dass das {\"U}berleben prim{\"a}rer Motoneurone in Zebrafisch Embryonen nicht beeintr{\"a}chtigt ist und dass andere neuronale Zellen keine signifikante Beeinflussung durch einen hnRNP-R Knockdown erfahren. Um die Spezifit{\"a}t des axonalen Ph{\"a}notyps, der durch hnRNP-R Knockdown hervorgerufen wurde zu belegen, wurde mit muriner hnRNP-R mRNA ein Rescue-Experiment durchgef{\"u}hrt. Es konnte gezeigt werden, dass dabei der axonale Ph{\"a}notyp weitestgehend wieder aufgehoben wurde. Parallel zu den Zebrafisch Experimenten wurde ein hnRNP-R Knockout Konstrukt mittels homologer Rekombination in Escherichia coli hergestellt und in murine embryonale Stammzellen elektroporiert. Die Charakterisierung einer hnRNP-R Knockout Maus k{\"o}nnte weitere bedeutende Einsichten in die in vivo Funktionen von hnRNP-R bei der Embryonalentwicklung und speziell der Entwicklung von Motoneuronen gew{\"a}hren. Um der Frage nach zu gehen, welche mRNAs in Wachstumskegeln von Axonen prim{\"a}rer Maus Motoneuronen zu finden sind oder durch Transportprozesse lokal akkumuliert sind,wurden Versuche unternommen, um mittels Laser-Mikrodissektion einzelne Wachstumskegel von Motoneuronen f{\"u}r Untersuchungen der enthaltenen mRNAs zu gewinnen. Erstmalig ist es im Rahmen dieser Arbeit gelungen, kompartimentalisierte Kulturen von prim{\"a}ren Motoneuronen der Maus zu etablieren. Damit wurde die Grundlage geschaffen, um RNA-Profile von distalen Zellkompartimenten wie den Axonen und Wachstumskegeln zu bestimmen.}, subject = {Heterogene Ribonucleoproteine}, language = {de} } @phdthesis{Drexl2018, author = {Drexl, Hans Henning}, title = {Der Einfluss von R-Roscovitine und Valproat auf das Wachstums- und pr{\"a}synaptische Differenzierungsverhalten SMN-defizienter Motoneurone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171696}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die spinale Muskelatrophie ist eine monogenetische Erkrankung, die bereits im Kindesalter aufgrund von Motoneurondegeneration zu Muskelatrophie f{\"u}hrt und nicht selten einen t{\"o}dlichen Verlauf nimmt. Ursache der Erkrankung ist ein Mangel an SMN-Protein. Der hierf{\"u}r verantwortliche Verlust des SMN1-Gens kann durch das SMN2-Gen aufgrund eines gest{\"o}rten Spleißprozesses am Exon 7 nicht kompensiert werden. Neben Aufgaben in der RNA-Prozessierung wird das SMN-Protein f{\"u}r den axonalen Transport von Ribonucleinpartikeln in Motoneuronen ben{\"o}tigt, was bei der SMA zu pathologischem Wachstum, Differenzierung und Funktion der Motoraxone f{\"u}hrt. Im Rahmen dieser Arbeit wurden kultivierte Motoneurone aus einem Mausmodell f{\"u}r die SMA Typ I (Genotyp Smn-/-;SMN2) mit zwei unterschiedlichen Substanzen behandelt und deren Wirkungen auf das pr{\"a}synaptische Differenzierungsverhalten der Motoneurone verglichen: R-Roscovitine, ein Agonist/Modulator spannungsabh{\"a}ngiger N-Typ- und P/Q-Typ-Kalziumkan{\"a}le, welcher zudem eine CDK-inhibierende Wirkung besitzt, sowie Valproat, ein HDAC-Inhibitor, der eine stimulierende Wirkung auf die SMN-Transkription hat. Es zeigte sich, dass R-Roscovitine in der Lage ist, das pathologische Wachstums- und pr{\"a}synaptische Differenzierungsverhalten der Smn-defizienten Motoneurone zu normalisieren, ohne hierbei Einfluss auf die erniedrigte Menge an Smn-Protein zu nehmen. Die Behandlung mit Valproat beeinflusst hingegen weder die Menge an Smn-Protein, noch die pathologische Differenzierung der Wachstumskegel Smn-defizienter Motoneurone. Erkl{\"a}ren lassen sich diese Effekte in erster Linie durch den Agonismus an spannungsabh{\"a}ngigen Kalziumkan{\"a}len durch R-Roscovitine. Durch vermehrten Kalziumeinstrom kommt es zur Normalisierung von Struktur und Funktion der Wachstumskegel. Ein CDK-vermittelter Effekt scheint unwahrscheinlich. Obgleich die genauen Vorg{\"a}nge noch nicht verstanden sind, zeigen diese Ergebnisse, dass sich Smn-defiziente Motoneurone normal entwickeln k{\"o}nnen, wenn die hierf{\"u}r erforderlichen kalziumabh{\"a}ngigen pr{\"a}synaptischen Differenzierungssignale korrekt ausgel{\"o}st werden. Bei weiterer Erforschung sind Therapeutika denkbar, die in Zukunft die {\"u}berwiegend genetisch orientierten Therapieans{\"a}tze zur Hochregulation der SMN-Expression bei SMA-Patienten {\"u}ber einen von der Genetik unabh{\"a}ngigen Wirkmechanismus unterst{\"u}tzen k{\"o}nnen.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Fischer2010, author = {Fischer, Matthias}, title = {Der Einfluß der Ribosomale S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48341}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit sollte die Funktion der Ribosomalen S6 Kinase 2 (RSK2) auf neuronaler Ebene untersucht werden. Dahingehend gab es, z.B. auf Grund der Ph{\"a}notypen von Fliegen und M{\"a}usen mit Mutationen im entsprechenden Gen oder von Patienten mit Coffin-Lowry-Syndrom (CLS) nur Vermutungen. Es bestand letztlich die Hoffnung, einen Beitrag zur Aufkl{\"a}rung der Pathophysiologie des CLS zu leisten. Es stellte sich auf Grund von Experimenten sowohl in vivo als auch in vitro in verschiedenen Modellsystemen in dieser Arbeit heraus, daß RSK2 einen negativen Einfluß auf das Neuriten- und Synapsenwachstum hat. In kultivierten Motoneuronen f{\"u}hrte der KO von RSK2 zu l{\"a}ngeren Axonen und die {\"U}berexpression eines konstitutiv aktiven RSK2-Konstrukts zu k{\"u}rzeren Axonen. In PC12-Zellen f{\"u}hrte die Expression von konstitutiv aktiven RSK2 Konstrukten zur Verk{\"u}rzung der Neuriten und die Expression eines Kinase-inaktiven RSK2 Konstrukts zu l{\"a}ngeren Neuriten. In vivo war die neuromuskul{\"a}re Synapse bei RSK2-KO M{\"a}usen vergr{\"o}ßert und hatte bei Drosophila rsk Mutanten mehr Boutons. Das RSK2-Protein ist in Motoneuronen der Maus und in {\"u}berexprimierter Form in den Boutons der neuromuskul{\"a}ren Synapse bei Drosophila nachweisbar. Damit wurde zum ersten Mal die Funktion von RSK2 auf neuronaler Ebene beschrieben. Bez{\"u}glich des Mechanismus, wie RSK2 das Nervenwachstum beeinflußt gab es deutliche Hinweise, die daf{\"u}r sprechen, daß RSK2 dies {\"u}ber eine in der Literatur schon h{\"a}ufiger beschriebene Hemmung der MAPK ERK1/2 erreicht. F{\"u}r diese Hypothese spricht die Tatsache, daß die ERK-Phosphorylierung in murinen Motoneuronen und im R{\"u}ckenmark embryonaler M{\"a}use der RSK2-Mutante erh{\"o}ht ist und der Axonwachstumsdefekt durch eine Hemmung von MEK/ERK behoben werden kann. Auch ist die ERK-Phosphorylierung an der murinen Muskel-Endplatte in der Mutante erh{\"o}ht. Zudem zeigen genetische Epistasis-Experimente in Drosophila, daß RSK die Bouton-Zahl {\"u}ber ERK/RL hemmt. RSK scheint also in Drosophila von der Funktion her der RSK2-Isoform in Wirbeltieren sehr {\"a}hnlich zu sein. Ein weiteres wichtiges Ergebnis ist die Beobachtung, daß RSK2 bei Motoneuronen keinen wesentlichen Einfluß auf das {\"U}berleben der Zellen in Gegenwart neurotropher Faktoren hat. M{\"o}glicherweise spielen hier redundante Funktionen der RSK Familienmitglieder eine Rolle. Ein bislang unerkl{\"a}rter Befund ist die reduzierte Frequenz spontaner Depolarisationen bzw. damit einhergehender Ca2+ Einstr{\"o}me bei RSK2-KO Motoneuronen in Zellkultur. Die H{\"a}ufigkeit und Dichte von Ca2+-Kan{\"a}len und aktive Zonen Proteinen war in Motoneuronen nicht von der Anwesenheit des RSK2-Proteins abh{\"a}ngig. Im Hippocampus konnte außerdem das RSK2-Protein pr{\"a}synaptisch in den Moosfaser-Boutons der CA3 Region nachgewiesen werden. Es befindet sich auch in den Pyramidenzellen, aber nicht in den Pyramidenzell-Dendriten in CA3. Bez{\"u}glich der Bedeutung dieser Befunde f{\"u}r die Aufkl{\"a}rung der Pathologie des CLS ist zu folgern, daß der neuro-psychologische Ph{\"a}notyp bei CLS Patienten wahrscheinlich nicht durch reduziertes {\"U}berleben von Neuronen, sondern eher durch disinhibiertes Axonwachstum oder Synapsenwachstum bedingt ist. Dies kann grob sowohl f{\"u}r die peripheren als auch die zentralen Defekte gelten, denn die Synapsen im ZNS und am Muskel sind in ihrer molekularen Ausstattung z.B. im Bereich der Vesikel, der aktiven Zonen oder der Transmitteraussch{\"u}ttung sehr {\"a}hnlich. Weiterhin k{\"o}nnte eine ver{\"a}nderte synaptische Plastizit{\"a}t u.a. an der Moosfaser-Pyramidenzell-Synapse in der CA3 Region des Hippocampus eine Rolle bei den kognitiven und mnestischen Einschr{\"a}nkungen der Patienten spielen. Die Entdeckung, daß aktiviertes ERK bei den beobachteten Effekten eine Rolle spielt kann f{\"u}r die Entwicklung von Therapiestrategien eine wertvolle Erkenntnis sein.}, subject = {Ribosom}, language = {de} } @phdthesis{Pasedag2008, author = {Pasedag, Saskia Maria}, title = {Differenzielle Wirkungen neurotropher Faktoren auf das Axon-und Dendritenwachstum von Motoneuronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29473}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In der vorliegenden Dissertation wurde die subzellul{\"a}re Lokalisation der Rezeptoren f{\"u}r die neurotrophen Faktoren BDNF, CNTF und GDNF in prim{\"a}ren embryonalen und adulten Motoneuronen erstmalig genau charakterisiert. Die Rezeptoruntereinheiten des BDNF und CNTF Rezeptors, TrkB, p-TrkB, gp130 und p-Stat3, sind im Perikaryon, in Dendriten, im Axon und an den Axonterminalen bzw. Wachstumskegeln von Motoneuronen lokalisiert. Dabei sind die nativen Formen (TrkB, gp130) im Axon {\"u}berwiegend membranst{\"a}ndig, die aktivierten Formen (p-TrkB, p-Stat3) {\"u}berwiegend im Inneren des Axons lokalisiert. Demgegen{\"u}ber sind die Rezeptoruntereinheiten des GDNF Rezeptors, Ret und p-Ret, besonders stark in den Dendriten exprimiert. Auch im Perikaryon und an der neuromuskul{\"a}ren Endplatte sind Ret und p-Ret lokalisiert, nicht jedoch im Axon. Im zweiten Teil der Arbeit wurde das durch neurotrophe Faktoren bedingte Neuritenwachstum genau quantifiziert. Dabei wurde zwischen einer Stimulation des Axon- bzw. des Dendritenwachstums differenziert. Die mit GDNF behandelten Dendriten werden etwa doppelt so lang wie die Dendriten, der mit BDNF oder CNTF behandelten Motoneurone. GDNF ist somit ein potenter Stimulator des Dendritenwachstums bei isolierten prim{\"a}ren Motoneuronen. Dieser Befund korreliert gut mit der starken Expression von Ret und p-Ret in den Dendriten. Des Weiteren wurde eine Analyse der Interaktion der neurotrophen Faktoren mit dem glutamatergen AMPA Rezeptor in Hinblick auf das Neuritenwachstum durchgef{\"u}hrt. Dabei zeigte sich, dass die Interaktion zwischen neurotrophen Faktoren und dem AMPA Rezeptor besonders f{\"u}r das Dendritenwachstum von Bedeutung ist. Die klinische Bedeutung neurotropher Faktoren und deren Rezeptoren wird im dritten Teil der Arbeit dargestellt. Die pmn Maus ist ein Mausmodell f{\"u}r humane degenerative Erkrankungen des Motoneurons, wie der ALS und der SMA. Pmn Motoneurone, die mit BDNF oder GDNF kultiviert werden, weisen den charakteristischen axonalen Wachstumsdefekt der pmn Motoneurone auf und werden nur etwa halb so lang wie gesunde Kontrollmotoneurone. Bemerkenswerterweise f{\"u}hrt die Behandlung der pmn Motoneurone mit CNTF zu einer kompletten Remission des axonalen Wachstumsdefekts, so dass die Axone eine normale Axonl{\"a}nge erreichen. Auch die Anzahl der pathologischen axonalen Schwellungen werden in vitro durch CNTF stark reduziert. CNTF scheint demnach der interessanteste neurotrophe Faktor f{\"u}r eine Behandlung degenerativer Motoneuronerkrankungen zu sein.}, subject = {BDNF}, language = {de} } @phdthesis{Beck2016, author = {Beck, Katherina}, title = {Einfluss von RSK auf die Aktivit{\"a}t von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist haupts{\"a}chlich in Regionen des Gehirns exprimiert, in denen Lernen und Ged{\"a}chtnisbildung stattfinden. In M{\"a}usen und Drosophila, die als Modellorganismen f{\"u}r CLS dienen, konnten auf makroskopischer Ebene keine Ver{\"a}nderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Ged{\"a}chtnisbildung beobachtet. Die synaptische Plastizit{\"a}t und die einhergehenden Ver{\"a}nderungen in den Eigenschaften der Synapse sind fundamental f{\"u}r adaptives Verhalten. Zur Analyse der synaptischen Plastizit{\"a}t eignet sich das neuromuskul{\"a}re System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus S{\"a}ugern, die wesentlich f{\"u}r die Bildung von LTP im Hippocampus sind. Zun{\"a}chst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der pr{\"a}synaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion aus{\"u}ben k{\"o}nnte. Morphologische Untersuchungen der Struktur der neuromuskul{\"a}ren Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Gr{\"o}ße der neuromuskul{\"a}ren Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskul{\"a}ren Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivit{\"a}t, nicht aber die Freisetzung der Neurotransmitter an der pr{\"a}synaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizit{\"a}t glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der pr{\"a}synaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Dar{\"u}ber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellk{\"o}rpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und {\"u}bernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellk{\"o}rpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Dar{\"u}ber hinaus k{\"o}nnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizit{\"a}t beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgekl{\"a}rt werden, ob der Einfluss von RSK auf die synaptische Plastizit{\"a}t durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskul{\"a}ren Synapse auf die Funktion von RSK als Negativregulator von ERK zur{\"u}ckzuf{\"u}hren ist. Die Gr{\"o}ße der neuromuskul{\"a}ren Synapse sowie die Gr{\"o}ße der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeintr{\"a}chtigt ist. Die durchgef{\"u}hrten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK k{\"o}nnte an der Regulation des axonalen Transports von pr{\"a}synaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, daf{\"u}r verweilten mehr Mitochondrien in station{\"a}ren Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeintr{\"a}chtigt ist.}, subject = {Taufliege}, language = {de} } @phdthesis{Schweizer2002, author = {Schweizer, Ulrich}, title = {Genetische Untersuchungen zur Rolle von Cytochrom C und Stat3 bei der Regulation des embryonalen Zelltods von Motoneuronen der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Genetische Inaktivierung des somatischen Cytochrom C Gens der Maus Cytochrom C wurde als ein Interaktionspartner im Apoptosom beschrieben. Ziel dieses Projektes war es, die Rolle von Cytochrom C bei der Apoptose von Nervenzellen in vivo durch genetische Inaktivierung in der Maus zu untersuchen. Die homozygote Deletion des Cytochrom C Gens f{\"u}hrt jedoch zu einem sehr fr{\"u}hen Entwicklungsdefekt: Schon am 8. Embryonaltag findet man nur noch Embryonen ohne erkennbare K{\"o}rperachse. Im weiteren wurden daher heterozygote Tiere untersucht, die in bestimmten Geweben, wie Gehirn und R{\"u}ckenmark, eine Reduktion der Menge von Cytochrom C aufweisen. Am ersten Tag nach der Geburt konnten keine Unterschiede zwischen Tieren mit einem oder zwei Cytochrom C Genen in Bezug die Anzahl von Motoneuronen gefunden werden. Auch nach perinataler Fazialisl{\"a}sion war die Rate des Zelltods bei Tieren mit heterozygoter Deletion des Cytochrom C Gens unver{\"a}ndert. In vitro zeigte sich jedoch eine erh{\"o}hte Resitenz von Motoneuronen gegen{\"u}ber Fas-induzierter Apoptose. Bei der Analyse der Apoptose von Thymozyten zeigte sich ein Trend, der eine kleine, aber reproduzierbare Verz{\"o}gerung einer sp{\"a}ten Zelltodphase nach UV-induzierter Apoptose nahelegt. Erste Experimente deuten außerdem auf einen Effekt der Cytochrom C Gendosis auf den Verlauf einer Experimentellen Autoimmunencephalitis (EAE) hin. Charakterisierung der NFL-Cre Maus Die zelltypspezifische Genablation mit dem Cre/loxP System umgeht einige der gr{\"o}ßten Probleme der klassischen Methode der Geninaktivierung in M{\"a}usen, indem nur in bestimmten Geweben oder Zelltypen, eventuell sogar nur ab einem bestimmten Zeitpunkt, ein Gen gezielt ausgeschaltet werden kann. Allerdings h{\"a}ngt das Cre/loxP System von der Verf{\"u}gbarkeit von brauchbaren Cre-transgenen Mauslinien mit entsprechenden Expressionsmustern und -kinetiken ab. Wir haben eine transgene Mauslinie etabliert und analysiert, die die Cre Rekombinase unter der Kontrolle des humanen Neurofilament-L Promotors exprimiert. Das Expressionsmuster von Cre wurde in mehreren Geweben mit RT-PCR und durch Verkreuzung mit einer Reportergenmaus untersucht. Im Gehirn wurden Cre exprimierende Zelltypen mit in-situ Hybridisierung, Immunhistochemie und wiederum mit Hilfe der Reportermaus identifiziert. Dabei zeigte sich eine spezifische Cre Expression in bestimmten Neuronpopulationen wie hippocampalen Pyramidenzellen und spinalen und cranialen Motoneuronen. Unsere NFL-Cre Maus besitzt einige Eigenschaften, die bisher publizierte Cre-Linien nicht aufweisen, so z.B.eine starke Cre Expression in hippocampalen Pyramidenzellen, aber nicht in K{\"o}rnerzellen des Gyrus dentatus; Expression in cortikalen Pyramidenzellen, aber keine Expression im Striatum; Expression in zerebell{\"a}ren Purkinje-, aber nicht K{\"o}rnerzellen; sowie die Expression in spinalen und cranialen Motoneuronen, aber nicht in angrenzenden Interneuronen. Die Rolle von Stat3 f{\"u}r das {\"U}berleben von Motoneuronen Die Mitglieder der CNTF/LIF/Cardiotrophin Genfamilie sind potente {\"U}berlebensfaktoren f{\"u}r embryonale und l{\"a}dierte Motoneurone sowohl in vitro als auch in vivo. Diese Faktoren binden an Rezeptorkomplexe, die gp130 und LIFR als signaltransduzierende Komponenten enthalten. Im Gegensatz zu den Rezeptoren f{\"u}r andere neurotrophe Faktoren, f{\"u}hrt die Aktivierung von gp130 und LIFR zur Phosphorylierung und Aktivierung des Transkriptionsfaktors Stat3. Es war aber zu Beginn dieser Arbeiten unklar, ob die Aktivierung von Stat3 f{\"u}r den {\"U}berlebenseffekt der neuropoietischen Zytokine notwendig ist. Um diese Frage zu beantworten, wurde Stat3 in Motoneuronen mit Hilfe des Cre/loxP Systems konditional inaktiviert. Stat3 ist nicht f{\"u}r das {\"U}berleben embryonaler Motoneurone essentiell, obwohl man in vitro eine Verschiebung der Dosis-Wirkungskurve f{\"u}r CNTF findet. In vivo hingegen kann kein erh{\"o}hter Zelltod von Motoneuronen nachgewiesen werden. Im Gegensatz dazu, kommt es bei adulten Tieren mit Inaktivierung von Stat3 in Motoneuronen zu einem erh{\"o}hten Zelltod nach Fazialisl{\"a}sion. Diese Neurone k{\"o}nnen wiederum durch die Applikation neurotropher Faktoren, einschließlich CNTF, gerettet werden. Durch semiquantitative RT-PCR kann man zeigen, daß Stat3-regulierte Gene, deren Expression nach Nervenl{\"a}sion induziert wird, in Neuronen mit Inaktivierung von Stat3 weniger stark exprimiert werden. Zu diesen Genen geh{\"o}ren Reg-2, ein Mitogen f{\"u}r Schwannzellen, das von regenerierenden Neuronen exprimiert wird, und Bcl-xL, ein Gen, welches direkt in die Apoptoseregulation eingreift. Diese Daten zeigen, daß Stat3 Aktivierung eine essentielle Rolle f{\"u}r das {\"U}berleben nach L{\"a}sion von postnatalen Motoneuronen spielt, aber nicht w{\"a}hrend der Embryonalentwicklung. Das bedeutet, daß die Signalwege ein und desselben neurotrophen Faktors sich w{\"a}hrend der Entwicklung und reifung des Organismus ver{\"a}ndern k{\"o}nnen.}, subject = {Cytochrom c}, language = {de} } @phdthesis{Frank2015, author = {Frank, Nicolas Clemens}, title = {Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel f{\"u}r die Amyotrophe Lateralsklerose}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {1. Zusammenfassung W{\"a}hrend der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege f{\"u}r Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenl{\"a}sion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell f{\"u}r die Amyotrophe Lateralsklerose, f{\"u}hrt die Gabe von CNTF, nicht aber von GDNF zu einem verz{\"o}gerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Ausl{\"o}ser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das f{\"u}r eines von f{\"u}nf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschl{\"u}sseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Prim{\"a}re pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erh{\"o}hte Anzahl axonaler Schwellungen mit einer anomalen H{\"a}ufung von Mitochondrien - ein fr{\"u}hes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus {\"a}lteren Untersuchungen war bekannt, dass CNTF {\"u}ber den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen f{\"u}hrt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabh{\"a}ngigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abh{\"a}ngige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilit{\"a}t von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen prim{\"a}rer pmn mutierter und wildtypischer Motoneurone erh{\"o}ht und einen Anstieg von ATP ausl{\"o}st. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) ausl{\"o}st, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien f{\"u}hrt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, n{\"a}mlich axonale Mikrotubuli und Mitochondrien.}, subject = {Motoneuron}, language = {de} } @phdthesis{Lechner2009, author = {Lechner, Barbara Dorothea}, title = {Modulation des axonalen Wachstums prim{\"a}rer Motoneurone durch cAMP in einem Mausmodell f{\"u}r die Spinale Muskelatrophie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39585}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Spinale Muskelatrophie (SMA) ist eine h{\"a}ufige autosomal-rezessiv vererbte Erkrankung des motorischen Nervensystems bei Kindern. Ursache der Degeneration von spinalen Motoneuronen ist der homozygote Verlust des SMN- (survival of motoneuron) Gens und ein dadurch bedingter Mangel an SMN-Protein. Untersuchungen an Motoneuronen von Smn-defizienten M{\"a}usen ergaben St{\"o}rungen des axonalen L{\"a}ngenwachstums aufgrund einer Fehlverteilung des Zytoskelettproteins beta-Aktin und seiner mRNA in den Axonterminalen. Das Axonwachstum wird durch Aktin-Polymerisierung im Wachstumskegel gesteuert. beta-Aktin-mRNA findet sich auch in Axonen, und die lokale Proteinsynthese kann durch neuronale Aktivierung gesteigert werden. Das SMN-Protein ist am axonalen Transport von beta-Aktin beteiligt. In der vorliegenden Arbeit ergaben Western Blot-Analysen in neuralen Stammzellen (NSC) sowie spinalen Motoneuronen in vitro eine Steigerung der SMN-Proteinexpression durch 8-CPT-cAMP. Zur Untersuchung der Auswirkungen der erh{\"o}hten SMN-Proteinmenge auf die Pathologie der Motoneurone wurde ein in-vitro-Assay entwickelt, mit dessen Hilfe gezeigt werden konnte, dass eine Behandlung mit 100 µM 8-CPT-cAMP die axonalen Ver{\"a}nderungen isolierter embryonaler Smn-defizienter Motoneurone kompensieren kann. Motoneurone von 14 Tage alten Smn-defizienten und Kontroll-Mausembryonen wurden {\"u}ber sieben Tage hinweg auf einer Matrix aus Poly-Ornithin und Laminin-111 bzw. Laminin-121/221 kultiviert und mit 100µM cAMP und neurotrophen Faktoren behandelt. Nach Fixierung wurden die Zellen mit Antik{\"o}rpern gegen Islet-1/2, tau und beta-Aktin gef{\"a}rbt, mit Hilfe eines konfokalen Mikroskops fotografiert und digital vermessen. 8-CPT-cAMP erh{\"o}ht den beta-Aktin-Gehalt in den axonalen Wachstumskegeln von Smn-defizienten Motoneuronen. Die Gr{\"o}ße der Wachstumskegel nimmt durch die Behandlung um das 2-3fache zu und erreicht normale Werte. Auf Laminin-111 bleibt das L{\"a}ngenwachstum der Axone durch 100µM 8-CPT-cAMP unbeeinflusst, auf Laminin-121/221 wird das L{\"a}ngenwachstum normalisiert. Die beta-Aktin-Verteilung innerhalb der Axone und Wachstumskegel von Smn-defizienten Motoneuronen erscheint durch die cAMP-Behandlung nahezu normalisiert. Die Wiederherstellung der beta-Aktin-Verteilung in Wachstumskegeln durch cAMP kann große Auswirkungen auf die Funktionalit{\"a}t der Motoneurone haben. Die Ergebnisse sind m{\"o}glicherweise ein erster Schritt auf dem Weg zu einer Therapie f{\"u}r die Spinale Muskelatrophie.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Karle2008, author = {Karle, Kathrin Nora}, title = {Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins f{\"u}r das Axonwachstum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die proximale spinale Muskelatrophie (SMA) stellt eine der h{\"a}ufigsten erblichen Ursachen f{\"u}r den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschw{\"a}che und in schweren F{\"a}llen auch an sensiblen Ausf{\"a}llen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquit{\"a}r exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist f{\"u}r alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus f{\"u}r die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die {\"U}berlebensraten der Smn-/-;SMN2-Motoneurone 14 Tage alter Mausembryonen gegen{\"u}ber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonl{\"a}ngen der Smn-defizienten Motoneurone waren gegen{\"u}ber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeintr{\"a}chtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn-/-;SMN2 Motoneuronen eine signifikante Verminderung der Fl{\"a}che gegen{\"u}ber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukle{\"a}ren Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn-/-;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsst{\"o}rung fand sich f{\"u}r das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch f{\"u}r die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Ver{\"a}nderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn-/-;SMN2-M{\"a}usen war die Neuritenl{\"a}nge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verk{\"u}rzt und die Fl{\"a}che der Wachstumskegel hochsignifikant verringert. Im Smn-/-;SMN2 Mausmodell f{\"u}r eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgepr{\"a}gte, jedoch gleichartige Ver{\"a}nderungen, was auf einen {\"a}hnlichen Pathomechanismus in beiden Zelltypen hinweist.}, subject = {Spinale Muskelatrophie}, language = {de} } @phdthesis{Mayer2009, author = {Mayer, Christine Rita}, title = {Zyklisches AMP kompensiert morphologische und funktionelle Defekte in isolierten Smn-defizienten Motoneuronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die proximale spinale Muskelatrophie (SMA) ist eine autosomal rezessive Erb-krankheit, welche durch fortschreitende Muskelatrophie mit Betonung der pro-ximalen Extremit{\"a}ten, sowie zunehmende motorische L{\"a}hmungen charakterisiert wird. Bedingt wird diese neurodegenerative Erkrankung durch Mutation bzw. Deletion des SMN1-Gens auf Chromosom 5q13. Dies f{\"u}hrt zu reduzierten Mengen des ubiquit{\"a}r exprimierten SMN-Proteins, da der Verlust des SMN1-Gens nicht durch das noch verbleibende SMN2-Gen kompensiert werden kann. Die SMN-Promotor-Region enth{\"a}lt ein CRE II bindendes Element, welches Effekte von zyklischem Adenosinmonophosphat (cAMP) vermittelt und so die SMN-Transkription in untersuchten Zellen stimuliert. Ausgehend von diesem Befund stellte sich die Frage, ob cAMP dem Mangel an volll{\"a}ngen SMN bei der SMA entgegen wirkt. Daher wurden f{\"u}r diese Dissertation neurosph{\"a}renbildende kortikale Vorl{\"a}uferzellen und prim{\"a}r kultivierte Motoneuronen von Smn+/+; SMN2- und Smn-/-;SMN2-Mausembryonen untersucht, um zu kl{\"a}ren, ob die cAMP-Behandlung der Zellen zu einer Hochregulierung des SMN2-Transkripts f{\"u}hrt, und durch die resultierende Erh{\"o}hung des SMN-Proteingehalts morphologische und funktionelle Defekte kompensiert werden. Die Untersuchung zeigte eine signifikante Zunahme des SMN2-Transkriptgehalts in Anwesenheit von cAMP. Dadurch kam es zu einem Anstieg der SMN-Proteinmenge im Soma, Axon und Wachstumskegel von Smn-/-;SMN2-Motoneuronen. Die Verteilungs-st{\"o}rung des SMN-Interaktionspartners hnRNP R mit fehlender kontrolltypischer Anreicherung im distalen Axon und Wachstumskegel von Smn-/-;SMN2-Motoneuronen wurde ebenfalls durch cAMP kompensiert. Smn-defiziente Mo-toneurone zeigten im Vergleich zu Kontrollzellen kleinere Wachstumskegel sowie ein Defizit an \&\#946;-Aktin im distalen Axon. Zudem fehlte in Smn-/-;SMN2-Motoneuronen die bei Kontrollen ausgepr{\"a}gte Zusammenlagerung von N-Typ spezifischen Ca2+-Kan{\"a}len in der Pr{\"a}synapse, die nach Kontakt mit der \&\#946;2-Kette des endplattenspezifischen Laminin-221 spontan {\"o}ffnen und so einen in-trazellul{\"a}ren Kalziumanstieg bewirken, wodurch es zu Erregbarkeitsst{\"o}rungen und Axonelongationsdefekten bei Smn-defizienten Motoneuronen kommt. Die Behandlung der Smn-defizienten Motoneuronen mit cAMP f{\"u}hrte zur Vergr{\"o}ßerung der Wachstumskegelfl{\"a}che und zu einer im Verlauf des Axons zunehmenden Anf{\"a}rbung mit \&\#946;-Aktin. Außerdem kam es zu einer Erh{\"o}hung der Menge an Cav2.2-Kanalprotein in den Wachstumskegeln Smn-defizienter Motoneurone, was mit einer erh{\"o}hten Erregbarkeit korrelierte und zu einer Normalisierung der Axonl{\"a}nge von Smn-/-;SMN2-Motoneuronen auf Laminin-221 f{\"u}hrte. Die Ergebnisse dieser Arbeit lassen die Vermutung zu, dass Smn-defiziente Motoneurone in vivo Defekte im pr{\"a}synaptischen Bereich der Motorendplatte aufweisen. In Zukunft k{\"o}nnen mit dem beschriebenen in vitro Assay weitere Substanzen, welche die SMN2-Traskription stimulieren, auf ihr kompensatorisches Potential getestet werden.}, subject = {cAMP}, language = {de} }