@phdthesis{Fiedler2018, author = {Fiedler, Sebastian}, title = {Strukturelle und elektronische Zusammenh{\"a}nge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155624}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabh{\"a}ngigen Spinaufspaltung der Bandstruktur f{\"u}hrt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabh{\"a}ngigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplement{\"a}rer, oberfl{\"a}chensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zus{\"a}tzliche Experimente werden an d{\"u}nnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgef{\"u}hrt. Die inversionsasymmetrische Kristallstruktur in BiTeX f{\"u}hrt zur Existenz zweier nicht-{\"a}quivalenter Oberfl{\"a}chen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberfl{\"a}chen gespaltener Einkristalle belegen f{\"u}r BiTeI(0001) eine Koexistenz beider Terminierungen auf einer L{\"a}ngenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zur{\"u}ckf{\"u}hren lassen. Diese Dom{\"a}nen sind groß genug, um eine vollst{\"a}ndig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei r{\"a}umlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen L{\"a}ngenskala aus. Atomar aufgel{\"o}ste STM-Messungen zeigen f{\"u}r die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberfl{\"a}chen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativit{\"a}t der Halogene resultiert in verschieden starken Ladungs{\"u}berg{\"a}ngen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberfl{\"a}cheneigenschaften ist durch die Bedampfung mit Cs m{\"o}glich, wobei eine {\"A}nderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfl{\"a}che durch Heizen im Vakuum, bewirkt dies eine Ver{\"a}nderung der Bandstruktur in zwei Schritten. So f{\"u}hrt zun{\"a}chst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberfl{\"a}chenzust{\"a}nde hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfl{\"a}che - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von D{\"u}nnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Ver{\"a}nderung der Morphologie und elektronischen Struktur in Abh{\"a}ngigkeit von St{\"o}chiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der D{\"u}nnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberfl{\"a}chenzustands auf.}, subject = {Rashba-Effekt}, language = {de} } @phdthesis{Graus2018, author = {Graus, Martin}, title = {Anwendung und Weiterentwicklung der Orbitaltomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163194}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es erm{\"o}glicht, Molek{\"u}lorbitale mit hoher Ortsaufl{\"o}sung abzubilden. Hierf{\"u}r werden die zu untersuchenden Molek{\"u}le durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensit{\"a}tsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisph{\"a}rischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisph{\"a}re von der Energie der anregenden Strahlung abh{\"a}ngt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Molek{\"u}le, die hochgeordnete Schichten auf kristallinen Edelmetalloberfl{\"a}chen bilden. Im Fall eindom{\"a}nigen Wachstums liefern die parallel orientierten Molek{\"u}le identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldom{\"a}nen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeitr{\"a}ge dar. Somit lassen sich R{\"u}ckschl{\"u}sse auf die Orientierungen der Molek{\"u}le auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisph{\"a}rischen Schnitte durch den Impulsraum, ist es m{\"o}glich den Fourierraum des untersuchten Molek{\"u}lorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensit{\"a}ten mit Informationen {\"u}ber die Phase der Wellenfunktion im Impulsraum, die durch zus{\"a}tzliche Experimente oder rechnerisch gewonnen werden k{\"o}nnen, l{\"a}sst sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt f{\"u}r Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molek{\"u}l in einen angeregten vibronischen Zustand {\"u}bergehen. Mittels Photoemissionsexperimenten mit hoher Energieaufl{\"o}sung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Molek{\"u}le und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode erm{\"o}glichen, was eine neue Methode darstellt, Erkenntnisse {\"u}ber die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen.}, subject = {ARPES}, language = {de} }