@phdthesis{Albert2012, author = {Albert, Ferdinand}, title = {Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungstr{\"a}ger unterhalb der de-Broglie-Wellenl{\"a}nge eingeschr{\"a}nkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als k{\"u}nstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikros{\"a}ulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavit{\"a}t, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission {\"u}ber Fabry-Perot Moden, als auch eine laterale Emission {\"u}ber Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungstr{\"a}gern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt {\"u}ber das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die D{\"a}mpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erh{\"o}ht werden kann. In diesem Regime k{\"o}nnen Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpstr{\"o}men realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Loeffler2008, author = {L{\"o}ffler, Andreas}, title = {Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren h{\"o}chster G{\"u}te f{\"u}r Experimente zur starken Exziton-Photon-Kopplung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Als erster Schritt wurde der dreidimensionale optische Einschluss der Mikroresonatoren verbessert. Eine h{\"o}here G{\"u}te der Strukturen konnte vor allem durch Weiterentwicklung des Herstellungsprozesses erzielt werden. Der {\"A}tzprozess der T{\"u}rmchen wurde so optimiert, um m{\"o}glichst glatte und senkrechte Seitenw{\"a}nde der Resonatoren zu erreichen. Dies reduziert Streu- und Beugungsverluste an den Seitenw{\"a}nden der Mikroresonatoren und verbessert deren optischen Einschluss. Des Weiteren wurde der epitaktische Schichtaufbau der Resonatoren sowie die Wachstumsparameter der einzelnen Halbleiterschichten optimiert. Somit konnte der Q-Faktor der Resonatoren zum Beispiel durch die Verwendung von Spiegeln mit einer h{\"o}heren Reflektivit{\"a}t und einem angepassten V/III-Verh{\"a}ltnis bei den verschiedenen Epitaxieschichten weiter erh{\"o}ht werden. F{\"u}r einen aktiven Mikroresonator mit 26 (30) Spiegelpaaren im oberen (unteren) DBR und einem Durchmesser von 4 µm wurden somit Rekordwerte f{\"u}r den Q-Faktor von ca. 90000 erreicht. Parallel hierzu wurden Analysen zum Wachstum von selbstorganisierten GaInAs-Quantenpunkten auf GaAs-Substraten angestellt. Hierbei war sowohl die Entstehung der dreidimensionalen Wachstumsinseln als auch deren optische Eigenschaften Gegenstand der Untersuchungen. Die morphologischen Eigenschaften der Quantenpunkte wurde mittels Transmissions- und Rasterelektronenmikroskopie analysiert, womit die optischen Eigenschaften durch Photolumineszenz- und Photoreflexionsmessungen untersucht wurden. Die optischen und vor allem die geometrischen Eigenschaften der selbstorganisiert gewachsenen GaInAs-Quantenpunkte konnten entscheidend verbessert werden. Durch die Verwendung von einer gering verspannten Nukleationsschicht mit einem Indiumgehalt von 30 \% konnte die Fl{\"a}chendichte der Quantenpunkte auf 6 - 9 x 10^9 cm^-2 verringert und ihre geometrischen Abmessungen auf typische L{\"a}ngen von 50 - 100 nm und Breiten von ca. 30 nm erh{\"o}ht werden. Durch den reduzierten Indiumgehalt wird die Gitterfehlanpassung zwischen den Quantenpunkten und der umgebenden Matrix verkleinert. Die verringerte Verspannung beim Quantenpunktwachstum f{\"u}hrt zu einer erh{\"o}hten Migrationsl{\"a}nge der abgeschiedenen Atome auf der Oberfl{\"a}che, was wiederum zur Bildung von gr{\"o}ßeren Quantenpunkten mit geringerer Fl{\"a}chendichte f{\"u}hrt. Schließlich wurden die gewonnenen Erkenntnisse {\"u}ber das MBE-Wachstum von Mikroresonatoren, ihre Prozessierung und das selbstorganisierte Inselwachstum von GaInAs auf GaAs als Basis f{\"u}r die Herstellung weiterer Proben verwendet. Es wurden nun beide Bereiche miteinander verkn{\"u}pft und gering verspannte GaInAs-Quantenpunkte in die Mikroresonatoren eingewachsen. Die hohen G{\"u}ten der realisierten Mikrokavit{\"a}ten in Kombination mit Quantenpunkten mit vergr{\"o}ßerten Abmessungen und geringen Dichten machen diese Strukturen zu idealen Kandidaten f{\"u}r die Grundlagenforschung im Bereich der Quantenelektrodynamik. Als H{\"o}hepunkt erm{\"o}glichten diese Strukturen zum ersten Mal den Nachweis einer starken Wechselwirkung zwischen Licht und Materie in einem Halbleiter. F{\"u}r den Fall der gering verspannten vergr{\"o}ßerten Quantenpunkte im Regime der starken Kopplung konnte eine Vakuum-Rabi-Aufspaltung von ca. 140 µeV zwischen der Resonatormode und dem Quantenpunkt-Exziton beobachtet werden. Durch die verbesserten G{\"u}ten der Kavit{\"a}ten konnte das Regime der starken Wechselwirkung ebenfalls f{\"u}r kleinere Quantenpunkte erreicht werden. Eine Rabi-Aufspaltung von ca. 60 µeV wurde zum Beispiel f{\"u}r kreisrunde GaInAs-Quantenpunkte mit einem Indiumgehalt von 43 \% und Durchmessern zwischen 20 und 25 nm gemessen. Das Regime der starken Kopplung erm{\"o}glicht es weiterhin, R{\"u}ckschl{\"u}sse auf die Oszillatorst{\"a}rke der eingewachsenen Quantenpunkte zu ziehen. So konnte zum Beispiel f{\"u}r die vergr{\"o}ßerten Quantenpunktstrukturen eine Oszillatorst{\"a}rke von ca. 40 - 50 abgesch{\"a}tzt werden. Dagegen weisen die leicht verkleinerten Quantenpunkte mit einem Indiumgehalt von 43 \% nur eine Oszillatorst{\"a}rke von ca. 15 - 20 auf. Des Weiteren wurden f{\"u}r einen sp{\"a}teren elektrischen Betrieb der Bauteile dotierte Mikroresonatoren hergestellt. Die hohen G{\"u}ten der dotierten T{\"u}rmchen erm{\"o}glichten ebenso die Beobachtung von klaren quantenelektrodynamischen Effekten im elektrischen Betrieb. Die untersuchten elektrisch gepumpten Mikroresonatoren mit kleinen GaInAs-Quantenpunkten in der aktiven Schicht operierten im Regime der schwachen Kopplung und zeigten einen deutlichen Purcell-Effekt mit einem Purcell-Faktor von ca. 10 im Resonanzfall. Durch den Einsatz von vergr{\"o}ßerten GaInAs-Quantenpunkten konnte ebenfalls im elektrischen Betrieb das Regime der starken Wechselwirkung mit einer Rabi-Aufspaltung von 85 µeV erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Gessler2016, author = {Geßler, Jonas}, title = {Reduktion des Modenvolumens von Mikrokavit{\"a}ten im Regime der schwachen und starken Kopplung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ziel dieser Arbeit war die Reduktion des Modenvolumens in Mikrokavit{\"a}ten. Ein klei-nes Modenvolumen ist f{\"u}r die St{\"a}rke der Licht-Materie-Wechselwirkung wesentlich, weil dadurch z.B. die Schwelle f{\"u}r koh{\"a}rente Lichtemission gesenkt werden kann [1]. Der Purcell-Faktor, ein Maß f{\"u}r die Rate der spontanen Emission, wird durch ein mi-nimales Modenvolumen maximiert [2, 3]. Im Regime der starken Kopplung steigt mit Abnahme des Modenvolumens die Rabi-Aufspaltung und damit die maximale Tempe-ratur, bei der das entsprechende Bauteil funktioniert [4, 5]. Spektrale Eigenschaften treten deutlicher hervor und machen die Funktion der Struktur stabiler gegen{\"u}ber st{\"o}-renden Einfl{\"u}ssen. Der erste Ansatz, das Modenvolumen einer Mikrokavit{\"a}t zu reduzieren, zielte darauf, die Eindringtiefe der optischen Mode in die beiden Bragg-Spiegel einer Mikrokavit{\"a}t zu minimieren. Diese h{\"a}ngt im Wesentlichen vom Kontrast der Brechungsindizes der alternierenden Schichten eines Bragg-Spiegels ab. Ein maximaler Kontrast kann durch alternierende Schichten aus Halbleiter und Luft erreicht werden. Theoretisch kann auf diese Weise das Modenvolumen in vertikaler Richtung um mehr als einen Faktor 6 im Vergleich zu einer konventionellen Galliumarsenid/Aluminiumgalliumarsenid Mikro-kavit{\"a}t reduziert werden. Zur Herstellung dieser Strukturen wurden die aluminiumhal-tigen Schichten einer Galliumarsenid/Aluminiumgalliumarsenid Mikrokavit{\"a}t voll-st{\"a}ndig entfernt und so der Brechungsindexkontrast maximiert. Die Schichtdicken sind dabei entsprechend anzupassen, um weiterhin die Bragg-Bedingung zu erf{\"u}llen. Die Herstellung einer freitragenden Galliumarsenid/Luft-Mikrokavit{\"a}t konnte so erfolg-reich demonstriert werden. Die Photolumineszenz der Bauteile weist diskrete Reso-nanzen auf, deren Ursache in der begrenzten lateralen Gr{\"o}ße der Strukturen liegt. In leistungsabh{\"a}ngigen Messungen kann durch ausgepr{\"a}gtes Schwellenverhalten und auf-l{\"o}sungsbegrenzte spektrale Linienbreiten Laseremission nachgewiesen werden. Wegen der Abh{\"a}ngigkeit der photonischen Resonanz vom genauen Brechungsindex in den freitragenden Schichten eignen sich die vorgestellten Strukturen auch zur Bestimmung von Brechungsindizes. Alternativ kann die photonische Resonanz durch Einbringen verschiedener Gase in die freitragenden Schichten abgestimmt werden. Beides konnte mit Erfolg nachgewiesen werden. Der Nachteil dieses Ansatzes liegt vor allem darin, dass ein elektrischer Betrieb der so gefertigten Strukturen nicht m{\"o}glich ist. Hier bie-tet der zweite Ansatz eine bestm{\"o}gliche L{\"o}sung. Das alternative Konzept f{\"u}r den oberen Bragg-Spiegel einer konventionellen Galli-umarsenid/Aluminiumgalliumarsenid Mikrokavit{\"a}t ist das der Tamm-Plasmonen. Der photonische Einschluss wird hier durch einen unteren Bragg-Spiegel und einem d{\"u}n-nen oberen Metallspiegel erreicht. An der Grenzfl{\"a}che vom Halbleiter zum Metall bil-den sich die optischen Tamm-Plasmonen aus. Dabei kann der Metallspiegel gleichzei-tig auch als elektrischer Kontakt genutzt werden. Die Kopplung von Quantenfilm-Exzitonen an optische Tamm-Plasmonen wird in dieser Arbeit erfolgreich demons-triert. Im Regime der starken Kopplung wird mittels Stark-Effekt eine vollst{\"a}ndige elektro-optische Verstimmung, d.h. vom Bereich positiver bis hin zur negativen Ver-stimmung, des Quantenfilm-Exzitons gegen{\"u}ber der Tamm-Plasmonen Mode nachge-wiesen. Die Messungen best{\"a}tigen entsprechend des reduzierten Modenvolumens (Faktor 2) eine erh{\"o}hte Rabi-Aufspaltung. Dabei sind die spektrale Verschiebung und die Oszillatorst{\"a}rke des Quantenfilm-Exzitons konsistent mit der Theorie und mit Li-teraturwerten. Der wesentliche Nachteil des Ansatzes liegt in der maximalen G{\"u}te, die durch den großen Extinktionskoeffizienten des Metallspiegels limitiert ist.}, subject = {Galliumarsenidlaser}, language = {de} } @phdthesis{Gold2014, author = {Gold, Peter}, title = {Quantenpunkt-Mikroresonatoren als Bausteine f{\"u}r die Quantenkommunikation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Technologien, die im wesentlichen auf quantenmechanischen Gesetzen beruhen, wie die Quanteninformationsverarbeitung und die Quantenkommunikation, sind weltweit Gegenstand enormer Forschungsanstrengungen. Sie nutzen die einzigartigen Eigenschaften einzelner Quantenteilchen, wie zum Beispiel die Verschr{\"a}nkung und die Superposition, um ultra-schnelle Rechner und eine absolut abh{\"o}rsichere Daten{\"u}bertragung mithilfe von photonischen Qubits zu realisieren. Dabei ergeben sich Herausforderungen bei der Quantenkommunikation {\"u}ber große Distanzen: Die Reichweite der {\"U}bertragung von Quantenzust{\"a}nden ist aufgrund von Photonenverlusten in den {\"U}bertragungskan{\"a}len limitiert und wegen des No-Cloning-Theorems ist eine klassische Aufbereitung der Information nicht m{\"o}glich. Dieses Problem k{\"o}nnte {\"u}ber den Einsatz von Quantenrepeatern, die in den Quantenkanal zwischen Sender und Empf{\"a}ger eingebaut werden, gel{\"o}st werden. Bei der Auswahl einer geeigneten Technologieplattform f{\"u}r die Realisierung eines Quantenrepeaters sollten die Kriterien der Kompaktheit und Skalierbarkeit ber{\"u}cksichtigt werden. In diesem Zusammenhang spielen Halbleiterquantenpunkte eine wichtige Rolle, da sie sich nicht nur als Zwei-Niveau-Systeme ideal f{\"u}r die Konversion und Speicherung von Quantenzust{\"a}nden sowie f{\"u}r die Erzeugung von fliegenden Qubits eignen, sondern auch mit den g{\"a}ngigen Mitteln der Halbleitertechnologie und entsprechender Skalierbarkeit realisierbar sind. Ein Schl{\"u}ssel zur erfolgreichen Implementierung dieser Technologie liegt in der Zusammenf{\"u}hrung des Quantenpunktes als Quantenspeicher mit einem Bauteil, welches einzelne Photonen einfangen und aussenden kann: ein Mikroresonator. Aufgrund der Lokalisierung von Elektron und Photon {\"u}ber einen l{\"a}ngeren Zeitraum auf den gleichen Ort kann die Effizienz des Informationstransfers zwischen fliegenden und station{\"a}ren Qubits deutlich gesteigert werden. Des Weiteren k{\"o}nnen Effekte der Licht-Materie-Wechselwirkung in Resonatoren genutzt werden, um hocheffiziente Lichtquellen zur Erzeugung nichtklassischen Lichts f{\"u}r Anwendungen in der Quantenkommunikation zu realisieren. Vor diesem Hintergrund werden in der vorliegenden Arbeit Halbleiterquantenpunkte mithilfe von spektroskopischen Methoden hinsichtlich ihres Anwendungspotentials in der Quantenkommunikation untersucht. Die verwendeten Quantenpunkte bestehen aus In(Ga)As eingebettet in eine GaAs-Matrix und sind als aktive Schicht in vertikal emittierende Mikroresonatoren auf Basis von dielektrischen Spiegeln integriert. Dabei werden entweder planare Strukturen verwendet, bei denen die Spiegel zur Erh{\"o}hung der Auskoppeleffizienz von Photonen dienen, oder aber Mikros{\"a}ulenresonatoren, die es erm{\"o}glichen, Effekte der Licht-Materie-Wechselwirkung in Resonatoren zu beobachten. Zur Untersuchung der Strukturen wurden Messpl{\"a}tze zur Photolumineszenz-, Resonanzfluoreszenz-,Reflexions- und Photostromspektroskopie sowie zu Photonenkorrelationsmessungen erster und zweiter Ordnung aufgebaut oder erweitert und eingesetzt. Reflexions- und Photolumineszenzspektroskopie an Mikros{\"a}ulenresonatoren mit sehr hohen G{\"u}ten: Eine der wichtigsten Eigenschaften eines Mikros{\"a}ulenresonators ist seine G{\"u}te, auch Q-Faktor genannt. Er beeinflusst nicht nur das Regime der Licht-Materie-Wechselwirkung, sondern auch die H{\"o}he der Auskoppeleffizienz eines Quantenpunkt-Mikros{\"a}ulenresonator-Systems. Vor diesem Hintergrund wird eine Analyse der Verlustmechanismen, die eine Abnahme des Q-Faktors bewirken, durchgef{\"u}hrt. Dazu wird die G{\"u}te von Mikros{\"a}ulenresonatoren mit Durchmessern im Bereich von 2 - 8 µm mithilfe von Reflexions- und Photolumineszenzspektroskopie gemessen. Aufgrund der erh{\"o}hten Absorption an nichtresonanten Quantenpunkten und freien Ladungstr{\"a}gern sind die Verluste bei den Messungen in Photolumineszenzspektroskopie h{\"o}her als in Reflexionsspektroskopie, wodurch die in Reflexionsspektroskopie ermittelten Q-Faktoren f{\"u}r alle Durchmesser gr{\"o}ßer sind. F{\"u}r einen Quantenpunkt-Mikros{\"a}ulenresonator mit einem Durchmesser von 8 µm konnten Rekordg{\"u}ten von 184.000 ± 8000 in Photolumineszenzspektroskopie und 268.000 ± 13.000 in Reflexionsspektroskopie ermittelt werden. Photostromspektroskopie an Quantenpunkt-Mikros{\"a}ulenresonatoren: Durch einen verbesserten Messaufbau und die Verwendung von Mikros{\"a}ulenresonatoren mit geringen Dunkelstr{\"o}men konnte erstmals der Photostrom von einzelnen Quantenpunktexzitonlinien in elektrisch kontaktierten Mikroresonatoren detektiert werden. Dies war Voraussetzung, um Effekte der Licht-Materie-Wechselwirkung zwischen einem einzelnen Quantenpunktexziton und der Grundmode eines Mikros{\"a}ulenresonators elektrisch auszulesen. Hierzu wurden Photostromspektren in Abh{\"a}ngigkeit der Verstimmung zwischen Exziton und Kavit{\"a}tsmode unter Anregung auf die S{\"a}ulenseitenwand sowie in axialer Richtung durchgef{\"u}hrt. Unter seitlicher Anregung konnte der Purcell-Effekt, als Zeichen der schwachen Kopplung, {\"u}ber eine Abnahme der Photostromintensit{\"a}t des Quantenpunktes im Resonanzfall nachgewiesen werden und der entsprechende Purcell-Faktor zu Fp = 5,2 ± 0,5 bestimmt werden. Da die Transmission des Resonators bei der Anregung auf die S{\"a}ulenoberseite von der Wellenl{\"a}nge abh{\"a}ngt, ist die effektive Anregungsintensit{\"a}t eines exzitonischen {\"U}bergangs von der spektralen Verstimmung zwischen Exziton und Resonatormode bestimmt. Dadurch ergab sich im Gegensatz zur Anregung auf die Seitenwand des Resonators eine Zunahme des Photostroms in Resonanz. Auch in diesem Fall konnte ein Purcell-Faktor {\"u}ber eine Anpassung ermittelt werden, die einen Wert von Fp = 4,3 ± 1,3 ergab. Des Weiteren wird die koh{\"a}rente optische Manipulation eines exzitonischen Qubits in einem Quantenpunkt-Mikros{\"a}ulenresonator gezeigt. Die koh{\"a}rente Wechselwirkung des Zwei-Niveau-Systems mit den Lichtpulsen des Anregungslasers f{\"u}hrt zu Rabi-Oszillationen in der Besetzungswahrscheinlichkeit des Quantenpunktgrundzustandes, die {\"u}ber dessen Photostrom ausgelesen werden k{\"o}nnen. {\"U}ber eine {\"A}nderung der Polarisation des Anregungslasers wurde hier eine Variation der Kopplung zwischen dem Quantenemitter und dem elektromagnetischen Feld demonstriert. Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten: F{\"u}r die meisten technologischen Anwendungen in der Quantenkommunikation und speziell in einem Quantenrepeater sollten die verwendeten Quellen nicht nur einzelne sondern auch ununterscheidbare Photonen aussenden. Vor diesem Hintergrund wurden Experimente zur Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten in planaren Resonatorstrukturen durchgef{\"u}hrt. Dazu wurde zun{\"a}chst die Interferenz von Photonen aus einer Quelle demonstriert. Im Fokus der Untersuchungen stand hier der Einfluss der Anregungsbedingungen auf die Visibilit{\"a}t der Zwei-Photonen-Interferenz. So konnte in nichtresonanter Dauerstrichanregung ein nachselektierter Wert der Visibilit{\"a}t von V = 0,39 gemessen werden. Um den nicht nachselektierten Wert der Visibilit{\"a}t der Zwei-Photonen-Interferenz zu bestimmen, wurde die Einzelphotonenquelle gepulst angeregt. W{\"a}hrend die Visibilit{\"a}t f{\"u}r nichtresonante Anregung in die Benetzungsschicht {\"u}ber ein Wiederbef{\"u}llen und zus{\"a}tzliche Dephasierungsprozesse durch Ladungstr{\"a}ger auf einen Wert von 12\% reduziert ist, konnte unter p-Schalen-Anregung in einem Hong-Ou-Mandel-Messaufbau eine hohe Visibilit{\"a}t von v = (69 ± 1) \% erzielt werden. Außerdem wurde die Interferenz von zwei Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten demonstriert. Hierbei konnte eine maximale Visibilit{\"a}t von v = (39 ± 2)\% f{\"u}r gleiche Emissionsenergien der beiden Einzelphotonenquellen erzielt werden. Durch die {\"A}nderung der Photonenenergie {\"u}ber eine Temperaturvariation eines der beiden Quantenpunkte konnten die Photonen der beiden Quellen zunehmend unterscheidbar gemacht werden. Dies {\"a}ußerte sich in einer Abnahme der Interferenz-Visibilit{\"a}t. Um noch gr{\"o}ßere Visibilit{\"a}ten der Zwei-Photonen-Interferenz zu erreichen, ist die resonante Anregung des Quantenpunktexzitons vielversprechend. Deswegen wurde ein konfokales Dunkelfeldmikroskop f{\"u}r Experimente zur Resonanzfluoreszenz aufgebaut und bereits Einzelphotonenemission sowie das Mollowtriplet im Resonanzfluoreszenzspektrum eines Quantenpunktexzitons nachgewiesen.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Strauss2018, author = {Strauß, Micha Johannes}, title = {Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen f{\"u}r AlGaAs Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Erforschung von Quantenpunkten mit ihren quantisierten, atom{\"a}hnlichen Zust{\"a}nden, bietet eine Vielzahl von M{\"o}glichkeiten auf dem Weg zum Quantencomputer und f{\"u}r Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden k{\"o}nnen. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass G{\"u}ten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und T{\"u}rmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor f{\"u}r diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatort{\"u}rmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der T{\"u}rmchen. Dar{\"u}ber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatort{\"u}rmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es m{\"o}glich sein, ein Resonatort{\"u}rmchen direkt {\"u}ber dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung f{\"u}r die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der H{\"a}lfte des angestrebten T{\"u}rmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel {\"u}ber den Quantenpunkten, Resonatort{\"u}rmchen zielgenau auf die Quantenpunkte prozessiert werden k{\"o}nnen. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. F{\"u}r ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe m{\"o}glichst defektfrei {\"u}berwachsen werden konnte, die Struktur des Lochgitters aber nicht zerst{\"o}rt wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum n{\"a}chsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung f{\"u}r eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 \% der Quantenpunkte innerhalb von 50 nm und 60 \% innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte M{\"o}glichkeit, diese in Halbleiterresonatoren einbinden zu k{\"o}nnen, machen sie auch interessant f{\"u}r die Anwendung im Telekommunikationsbereich. Um f{\"u}r Glasfasernetze Anwendung zu finden, muss jedoch die Wellenl{\"a}nge auf den Bereich von 1300 nm oder 1550 nm {\"u}bertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenl{\"a}nge von 1300nm. Eine fu ̈r andere Bauteile sowie f{\"u}r Laserdioden bereits h{\"a}ufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von {\"u}ber 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenl{\"a}ngen gr{\"o}ßer 1300 nm emittieren. So ist es nun m{\"o}glich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenl{\"a}nge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen f{\"u}r 1300nm zu realisieren.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Obert2004, author = {Obert, Michael}, title = {Mikroresonatoren auf der Basis von II-VI-Halbleitern mit ein- und dreidimensionalem photonischem Einschluß}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13934}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Gegenstand der vorliegenden Arbeit waren II-VI-Halbleiter basierende Mikroresonatoren. Die Ziele der Arbeit bestanden dabei haupts{\"a}chlich in: 1. Untersuchung nichtlinearer Emission und starker Exziton-Photon-Kopplung bei eindimensionalem photonischem Einschluß auch bei hohen Leistungsdichten und Temperaturen 2. Erzeugung dreidimensionalen photonischen Einschlusses 3. Untersuchung nichtlinearer Emission in photonischen Punkten 4. Nachweis starker Kopplungseffekte in photonischen Punkten}, subject = {Optischer Resonator}, language = {de} } @phdthesis{Schneider2011, author = {Schneider, Christian}, title = {Konzepte zur skalierbaren Realisierung von effizienten, halbleiterbasierten Einzelphotonenquellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Dem Einsatz niederdimensionaler Nanostrukturen als optisch aktives Medium wird enormes Potential vorausgesagt sowohl in den klassischen optoelektronischen Bauteilen (wie z.B. Halbleiterlasern) als auch in optischen Bauteilen der n{\"a}achsten Generation (z.B. Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonenpaare). Dennoch konnten sich quantenpunktbasierte Halbleiterlaser, abgesehen von einigen wenigen Ausnahmen (QDLaser inc.), im industriellen Maßstab bisher nicht gegen Bauelemente mit h{\"o}herdimensionalen Quantenfilmen als optisch aktivem Element durchsetzen. Deshalb scheint der Einsatz von Quantenpunkten (QPen) in nichtklassischen Lichtquellen gegenw{\"a}rtig vielversprechender. Um jedoch solche Bauteile bis zur letztendlichen Marktreife zu bringen, m{\"u}ssen neben der starken Unterdr{\"u}ckung von Multiphotonenemission noch wesentliche Grundvoraussetzungen erf{\"u}llt werden: In dieser Arbeit wurden grundlegende Studien durchgef{\"u}hrt, welche insbesondere dem Fortschritt und den Problemen der Effizienz, des elektrischen Betriebs und der Skalierbaren Herstellung der Photonenqullen dienen sollte. Zum Einen wurden hierf{\"u}r elektrisch betriebene Einzelphotonenquellen basierend auf gekoppelten QP-Mikroresonatoren realisiert und de ren Bauteileffizienz gezielt optimiert, wobei konventionelle selbstorganisierte InAs-QPe als aktives Medium eingesetzt wurden. F{\"u}r die skalierbare Integration einzelner QPe in Mikroresonatoren wurde des Weiteren das gesteuerte QP-Wachstum auf vorstrukturierten Substraten optimiert und auf diese Art ortskontrollierte QPe in Bauteile integriert. F{\"u}r die Realisierung hocheffizienter, elektrisch gepumpter inzelphotonenquellen wurde zun{\"a}chst das Wachstum von bin{\"a}ren InAs-QPen im Stranski-Krastanov-Modus optimiert und deren optische Eigenschaften im Detail untersucht. Durch das Einbringen einer Schicht von Siliziumatomen nahe der QP-Schicht konnten die Emitter negativ geladen werden und der helle Trionenzustand der QPe als energetischer Eigenzustand des Systems zur effizienten Extraktion einzelner Photonen ausgenutzt werden. Durch die Integration dieser geladenen QPe in elektrisch kontaktierte, auf Braggspiegel basierte Mikrot{\"u}rmchen konnten Einzelphotonenquellen realisiert werden, in denen gezielt Licht-Materie- Wechselwirkungseffekte zur Steigerung der Bauteileffizienz ausgenutzt wurden. Basierend auf theoretischen {\"U}berlegungen wurde die Schichtstruktur soweit optimiert, dass letztendlich experimentell eine elektrisch gepumpte Einzelphotonenquelle mit einer Photonenemissionsrate von 47 MHz sowie einer zuvor unerreichten Bauteileffizienz von 34 \% im Regime der schwachen Licht-Materie-Kopplung demonstriert werden konnte. Da Effekte der Licht-Materie-Wechselwirkung zwischen QP und Resonator neben der spektralen Resonanz ebenfalls von der relativen Position von Resonator und QP zueinander abh{\"a}ngen, ist eine Kombination von positionierten QPen und Bauteilausrichtung nahezu unumg¨anglich f{\"u}r die skalierbare, deterministische Herstellung von Systemen aus perfekt angeordnetem Emitter und Resonator. Deshalb wurden bestehende Konzepte zum geordneten Wachstum von QPen weiterentwickelt: Hierbei wurde geordnetes InAs-QP-Wachstum mit Perioden realisiert, die vergleichbare Abmessungen wie optische Resonatoren aufweisen, also Nukleationsperioden zwischen 500 nm und 4 μm. Durch ein genaues Anpassen der Wachstums- und Prozessbedingungen konnte des Weiteren die Bildung von QP-Molek{\"u}len auf den Nukleationspl{\"a}tzen nahezu unterdr{\"u}ckt beziehungsweise gesteuert werden. Durch eine systematische Optimierung der optischen Eigenschaften der QPe konnten Emitter mit Einzelquantenpunktlinienbreiten um 100 μeV realisiert werden, was eine Grundvoraussetzung zur Studie ausgepr{\"a}gter Licht-Materie-Wechselwirkungseffekte in Mikroresonatoren darstellt. Letztendlich konnten durch die Integration derartiger QPe in optisch sowie elektrisch betriebene Mikroresonatoren erstmals Bauteile realisiert werden, welche einige der prinzipiellen, an eine Einzelphotonenquelle gestellten Anforderungen erf{\"u}llen. Insbesondere konnten deutliche Signaturen der schwachen Licht-Materie-Kopplung einzelner positionierter QPe in photonische Kristallresonatoren, Mikroscheibenresonatoren sowie Mikrot{\"u}rmchenresonatoren festgestellt werden. Dar{\"u}berhinaus konnte an einem spektral resonanten System aus einem positionierten QP und der Grundmode eines Mikrot{\"u}rmchenresonators eindeutig Einzelphotonenemission unter optischer Anregung demonstriert werden. Ebenfalls konnten Mikrot{\"u}rmchenresonatoren mit integrierten positionierten QPen erstmals elektrisch betrieben werden und somit die Grundvoraussetzung f{\"u}r eine der skalierbaren Herstellung effizienter Einzelphotonenquellen geschaffen werden.}, subject = {Einzelphotonenemission}, language = {de} } @phdthesis{Fischer2015, author = {Fischer, Julian}, title = {Koh{\"a}renz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher r{\"a}umlicher Dimensionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidit{\"a}t und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation f{\"u}r Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand ben{\"o}tigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierf{\"u}r bieten sich Quasiteilchen in Festk{\"o}rpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend h{\"o}her ist als f{\"u}r ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavit{\"a}ten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabh{\"a}ngige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zur{\"u}ckgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem f{\"u}r die Untersuchung von Bose-Einstein-Kondensation in Festk{\"o}rpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung {\"u}ber die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Koh{\"a}renzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gew{\"a}hlt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavit{\"a}t umgeben sind. Eindimensionale Polariton-Kondensation - r{\"a}umliche Koh{\"a}renz der Polariton-Dr{\"a}hte Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Dr{\"a}hten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtl{\"a}ngen und -breiten verwendet, um den Einfluss des zus{\"a}tzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu k{\"o}nnen. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten r{\"a}umlichen Koh{\"a}renz nach dem zentralen Abfall der g^(1)(r)-Funktion f{\"u}r große Abst{\"a}nde r in diesen Dr{\"a}hten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abk{\"u}rzung aus dem Englischen off-diagonal long-range order). Durch Analyse der Fernfeldemissionseigenschaften k{\"o}nnen mehrere Polariton-{\"A}ste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die r{\"a}umliche Koh{\"a}renzfunktion g^(1)(r) mithilfe eines hochpr{\"a}zisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei {\"u}ber große Abst{\"a}nde im Vergleich zur thermischen De-Broglie-Wellenl{\"a}nge einen konstanten Plateauwert an, der abh{\"a}ngig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die r{\"a}umliche Koh{\"a}renz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abf{\"a}llt. Bei P=1,6P_S ist das Plateau maximal und betr{\"a}gt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauh{\"o}he abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Koh{\"a}renzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden k{\"o}nnen. Im letzten Teil des Kapitels wird noch die Koh{\"a}renzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D). Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavit{\"a}t Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavit{\"a}t untersucht. Der Aufbau des unteren Spiegels und der Kavit{\"a}t inklusive der 12 verwendeten Quantenfilme ist analog zu den gew{\"o}hnlichen Mikrokavit{\"a}ten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abk{\"u}rzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiter{\"u}bergang (gr{\"o}ßt m{\"o}glichster Brechungsindexkontrast). Durch die quadratische Strukturgr{\"o}ße des Gitters (Seitenl{\"a}nge 5µm) sind die Polaritonen zus{\"a}tzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden k{\"o}nnen (Einschluss auf der ungef{\"a}hren Gr{\"o}ße der thermischen De-Broglie-Wellenl{\"a}nge). Um den Erhalt der starken Kopplung {\"u}ber die Kondensationsschwelle hinaus nachweisen zu k{\"o}nnen, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgef{\"u}hrt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Koh{\"a}renzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekoh{\"a}renzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte gr{\"o}ßer als 1 an. F{\"u}r einen gew{\"o}hnlichen Photon-Laser (VCSEL, Abk{\"u}rzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar. Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei m{\"o}glichen Regime der Mikrokavit{\"a}tsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erh{\"o}hung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abh{\"a}ngigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons best{\"a}tigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine gr{\"o}ßere diamagnetische Verschiebung gemessen als f{\"u}r die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und L{\"o}chern erkl{\"a}rt, was in einer Erh{\"o}hung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollst{\"a}ndigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, w{\"a}hrend zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabh{\"a}ngigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. F{\"u}r das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.}, subject = {Exziton-Polariton}, language = {de} }