@phdthesis{Machon2003, author = {Machon, Christian}, title = {Thermodynamische Untersuchungen und semiempirische Berechnungen an Dihydroxynaphthalinen und einfachen Naphthalinderivaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Wirksamkeit eines Arzneistoffs h{\"a}ngt in entscheidendem Maße von seiner Wasserl{\"o}slichkeit ab. Schlechte L{\"o}slichkeit bedeutet eine große positive {\"A}nderung der Freien Energie w{\"a}hrend des L{\"o}sevorgangs. Hinweise zu finden, die zum besseren Verst{\"a}ndnis des L{\"o}sungsprozesses f{\"u}hren, ist das Ziel dieser Arbeit. Auf der Grundlage des Hess'schen Satzes wird der L{\"o}sungsprozess in Ersatzprozesse zerlegt. Die Teilschritte der Ersatzprozesse werden thermodynamisch, kalorimetrisch und quantenchemisch beschrieben. Freie Energien, Standardenthalpien und Standardentropien der Teilschritte werden erfasst und beurteilt. Weitere physikochemische Gr{\"o}ßen werden gemessen oder berechnet, die mit den einzelnen Teilschritten in Zusammenhang stehen k{\"o}nnen. Einfache Naphthalinderivate dienen als Modellsubstanzen. Dies sind zwei einfach und sieben zweifach hydroxylierte Naphthaline, 1-Naphthylamin, 4-Chlor-1-naphthol und 2-Naphthalinthiol. Zum einen wird der L{\"o}sungsvorgang als Summe aus Sublimation und anschließender Solvatation betrachtet. Die Freien Sublimationsenergien werden aus dem experimentell ermittelten Sublimationsdampfdruck berechnet. Dies geschieht mittels einer Hochvakuumapparatur oder einer gaschromatographischen Methode. Je mehr polare Gruppen am Grundger{\"u}st sind, desto h{\"o}her ist der energetische Aufwand, das Molek{\"u}l zu sublimieren. Die Freie Energie betr{\"a}gt f{\"u}r Naphthalin 30,5 [kJ·mol-1], f{\"u}r einfach substituierte Naphthaline 40,1 und 45,3 [kJ·mol-1] und f{\"u}r zweifach hydroxylierte Naphthaline 51,8 bis 67,5 [kJ·mol-1]. In {\"a}hnlichem Verh{\"a}ltnis stehen auch die Freien Solvatationsenergien. Diese werden mittels AMSOL, eines quantenchemischen semiempirischen Rechenprogramm, f{\"u}r zwei Parametrisierungen AM1 und PM3 berechnet. Die L{\"o}slichkeit der Substanzen in Wasser wird ermittelt, und daraus die Freie L{\"o}sungsenergie berechnet. Der Unterschied in den Freien L{\"o}sungsenergien ist trotz des gr{\"o}ßeren Energieaufwandes der substituierten Derivate bei der Sublimation um ca. 10 [kJ·mol-1] je polarer Gruppe nicht deutlich. Die Ursache ist die Energiefreisetzung w{\"a}hrend der Solvatation, die mit zunehmenden polaren Gruppen mehr Energie freisetzt. Gr{\"u}nde daf{\"u}r sind vermehrte Wasserstoffbr{\"u}ckenbindungen und st{\"a}rkere Dipol-Dipol-Wechelswirkungen der h{\"o}her substituierten Naphthaline. Ein den Freien Energien {\"a}hnliches Bild ergibt sich bei der Betrachtung der Standardenthalpien. Die Standardsublimationsenthalpie wird aus Sublimationsdr{\"u}cken bei unterschiedlichen Temperaturen berechnet, die Standardl{\"o}sungsenthalpie mittels Kalorimetrie und die Standardsolvatationsenthalpie aus der Differenz der beiden vorangegangenen. Adsorptionsmessungen werden durchgef{\"u}hrt, um kalorimetrische Falschmessungen durch Adsorption von Wasser an die Substanzen auszuschließen. Die Ursachen f{\"u}r ein den Freien Energien {\"a}hnliches Verhalten sind die gleichen. Eine Ausnahme bildet 1,3-Dihydroxynaphthalin, bei dem die Standardl{\"o}sungsenthalpie um den Faktor 4 gr{\"o}ßer ist als bei den restlichen Dihydroxynaphthalinderivaten. Die Standardentropien werden aus den vorher gewonnenen Gr{\"o}ßen berechnet. Die Standardsublimationsentropien der untersuchten Substanzen liegen zwischen 162 und 350 [J·mol-1·K-1]. Ebenso steigen sie beim L{\"o}sevorgang mit Ausnahme von 2-Naphthalinthiol. Dort liegt die Ursache in der mangelnden Hydrophilie, so dass sowohl beim L{\"o}sen als auch beim Mischen der Ordnungszustand zunimmt. Bei der Solvatation sinkt die Entropiealler Substanzen mit Ausnahme von 1,3- Dihydroxynaphthalin. Eine Beurteilung aufgrund der Entropien zwischen den Naphthalinen zu machen, ist anhand der Messergebnisse nicht m{\"o}glich. Die zweite Betrachtungsweise legt dem L{\"o}sungsprozess das Schmelzen und anschließende Mischen der Substanz mit dem L{\"o}sungsmittel zugrunde. Die Standardschmelzenthalpie wird kalorimetrisch aus Schmelzpunkt, Differenz der W{\"a}rmekapazit{\"a}ten und der Schmelzw{\"a}rme am Schmelzpunkt ermittelt. Die Standardmischungsenthalpien werden aus der Differenz von kalorimetrisch gemessener Standardl{\"o}sungsenthalpie und Standardschmelzenthalpie berechnet. Die Standardschmelzenthalpien der Dihydroxynaphthaline sind geringer. Dies hat allerdings in den h{\"o}heren Schmelzpunkten seine Ursache. Das chlorierte 1-Naphthol liegt mit seinem Schmelzverhalten im Bereich des einfachen 1-Naphthols, so dass das Chloratom scheinbar keine große Rolle im Schmelzprozess spielt. Die {\"A}nderungen der Entropien w{\"a}hrend des Schmelzprozesses werden aus den gleichen Gr{\"o}ßen wie die Standardschmelzenthalpie gewonnen. Die Mischungsentropie wird aus der Differenz von Schmelz- und L{\"o}sungsentropie berechnet. Die Ordnung w{\"a}hrend des Mischungsvorganges nimmt bei allen untersuchten Substanzen zu außer bei 2-Naphthalinthiol und Naphthalin. Beide hydrophoben Molek{\"u}le haben in w{\"a}ssriger L{\"o}sung weniger M{\"o}glichkeiten sich anzuordnen als in der Schmelze. In die Berechnung der Schmelzentropien gehen die Schmelztemperaturen mit ein. Je h{\"o}her der Schmelzpunkt ist, desto niedriger ist die Standardschmelzentropie. Die Solvatationsenergien werden mittels AM1- und PM3-Parametrisierung in AMSOL berechnet und mit dem experimentell ermitteltem Wert verglichen. Die Berechnungsmethoden zeigen eine statistisch nicht unterscheidbare gleiche Korrelation von r2 = 0,97 f{\"u}r AM1 und r2 = 0,98 f{\"u}r PM3. Die Berechnung der Freien Solvatationsenergie setzt sich aus einzelnen Teilbetr{\"a}gen zusammen. Ein Teil ist die freiwerdende Polarisationsenergie, die mit zunehmender Zahl polarer Substituenten ansteigt, da Partialladungen h{\"a}ufiger auftreten und polarisiert werden k{\"o}nnen. Auch die Oberfl{\"a}chenenergie tr{\"a}gt zur st{\"a}rkeren Solvatation polar substituierter Naphthaline bei. Van der Waals-Oberfl{\"a}chen und -Volumina der untersuchten Molek{\"u}le werden mittels AMSOL berechnet. Die Oberfl{\"a}chen der Dihydroxynaphthaline liegen bei ca. 375 [\&\#506;2], die einfach substituierten darunter. Die Volumina der Dihydroxynaphthaline werden zu ca. 146 [\&\#506;3] berechnet. Berechnete logarithmierte Oktanol/Wasser-Verteilungskoeffizienten werden mit den experimentell ermittelten verglichen. Zur Berechnung wird eine AM1- und PM3-Parametrisierung verwendet. Beide Parameters{\"a}tze k{\"o}nnen nur unzureichend Oktanol/Wasser-Verteilungskoeffizienten berechnen. Die Bestimmtheitsmaße r2 liegen unter 0,79. Modellrechnungen weisen als abschließende Beurteilung auf einzelne Gr{\"o}ßen hin, die mit Freier Sublimationsenergie, Freier Solvatationsenergie und Freier L{\"o}sungsenergie in engerem Zusammenhang stehen. Die Einflussgr{\"o}ßen werden auf maximal drei festgelegt, um eine Zufallskorrelation auszuschließen. Es l{\"a}sst sich ein Modell f{\"u}r die Freie Sublimationsenergie berechnen, das f{\"u}r AM1-Berechnungen ein Bestimmtheitsmaß von r2 = 0,984 zeigt und die Molek{\"u}loberfl{\"a}che, die Wechselwirkung von Polarisationsenergie und Molek{\"u}lvolumen und das quadrierte Molek{\"u}lvolumen mit einbezieht. F{\"u}r PM3-Berechnungen werden das Molek{\"u}lvolumen, das Dipolmoment in der Gasphase und die Wechselwirkung von Polarisationsenergie und Molek{\"u}lvolumen herangezogen, wobei das Bestimmtheitsmaß r2 = 0,986 ist. Die experimentell ermittelte Freie Sublimationsenergie der untersuchten Substanzen kann durch drei berechnete Parameter beschrieben werden. Beim Modell zur Freien Solvatationsenergie werden Polarisationsenergie, Oberfl{\"a}chenenergie und Schmelztemperatur als die entscheidenden Einflussparameter herangezogen. Das Bestimmtheitsmaß r2 erreicht 0,979 f{\"u}r AM1-Berechnungen und 0,983 f{\"u}r PM3-Berechnungen. Das Modell zur Berechnung der Freien L{\"o}sungsenergie beruht auf der Polarisationsenergie, der Schmelztemperatur und dem Molek{\"u}lvolumen bei AM1-Berechnungen. Statt des Molek{\"u}lvolumens wird bei PM3-Berechnungen als dritte Gr{\"o}ße die Schmelzw{\"a}rme herangezogen. Die Korrelation ist mit r2 = 0,847 bei AM1-Berechnungen und r2 = 0,879 bei PM3-Berechnungen nicht zuf{\"a}llig, aber nicht so deutlich wie bei den beiden anderen Modellierungen. Ausblickend l{\"a}sst sich festhalten, dass auch 13 Substanzen f{\"u}r eine umfassende theoretische Erfassung der Ersatzprozesse zum L{\"o}sungsvorgang nicht ausreichen. Ein wichtiger Schritt wird die Beschreibung der Kristallstruktur und der Gitterenergie sein, um befriedigende L{\"o}slichkeitsvorhersagen machen zu k{\"o}nnen.}, subject = {Dihydroxynaphthaline}, language = {de} }