@phdthesis{Greiser2003, author = {Greiser, Andreas}, title = {Dichte-gewichtete Phasenkodierung zur effizienten k-Raumabtastung in der NMR-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7145}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die spektroskopische NMR-Bildgebung (Chemical Shift Imaging, CSI) kombiniert die Lokalisationstechniken der NMR-Tomographie mit der NMR-Spektroskopie und bietet so eine ortsaufgel{\"o}ste metabolische Information {\"u}ber das untersuchte Gewebe. Mit dieser Technik k{\"o}nnen Stoffwechselvorg{\"a}nge direkt und quantitativ untersucht werden. Deshalb finden die Verfahren der spektroskopischen NMR-Bildgebung in der medizinischen Forschung eine immer breitere Anwendung. Zwei Aspekte erschweren hierbei die klinische Etablierung dieser Methoden: die aufgrund der geringen Empfindlichkeit langen notwendigen Messzeiten bei dennoch geringer r{\"a}umlicher Aufl{\"o}sung und die im Vergleich zur herk{\"o}mmlichen NMR-Tomographie aufwendigere Datenauswertung. In der vorliegenden Arbeit wurden in beiden Punkten substantielle methodische Fortschritte erzielt. In einer Fallstudie mit Herzpatienten konnten erstmals die Ver{\"a}nderungen der Metabolitensignale auf 31P-Karten visualisiert werden. Die dabei erreichte Empfindlichkeit erlaubt auch die Untersuchung der Herzhinterwand, wobei hier die Sensitivit{\"a}t an der Grenze des f{\"u}r eine Individualdiagnostik minimal akzeptablen Signal-Rausch-Verh{\"a}ltnisses (SNR) liegt. Der Einsatz h{\"o}herer Grundfeldst{\"a}rken in der 31P-NMR-Spektroskopie l{\"a}ßt einen deutlichen Empfindlichkeitsgewinn erwarten. Im Rahmen dieser Arbeit wurde eine umfassende Vergleichsstudie zwischen einem klinischen 1,5 T NMR-Bildgebungssystem und einem 2,0 T Tomographen durchgef{\"u}hrt. Der beobachtete Empfindlichkeitsgewinn von 45\% steht im Rahmen der Messgenauigkeit in Einklang mit einem theoretisch zu erwartenden, linearen Anstieg des SNR. Die Lokalisationseigenschaften eines ortsaufgel{\"o}sten NMR-Experiments werden dadurch bestimmt, wie die der k-Raum, der Raum der r{\"a}umlichen Frequenzen, abgetastet wird. Insbesondere in r{\"a}umlich niedrig aufgel{\"o}sten Experimenten f{\"u}hren die Seitenbanden der r{\"a}umlichen Antwortfunktion zu Signalkontamination. Bei der Phasenkodierung kann diese Kontamination durch eine auf unterschiedlichen Mittelungszahlen beruhende Wichtung der k-Raumabtastung unterdr{\"u}ckt werden. Bei vorgegebener Experimentdauer und r{\"a}umlicher Aufl{\"o}sung verringert diese Akkumulations-gewichtetete Phasenkodierung jedoch im Vergleich zum ungewichteten Experiment den abdeckbaren Bildbereich. Der Schwerpunkt der vorliegenden Arbeit lag deshalb auf der Entwicklung eines neuen k-Raum-Abtastschemas. Dieses Abtastschema basiert auf einer Modulation der Abtastdichte im k-Raum und wird deshalb als Dichte-Wichtung („DW") bezeichnet. Zur Diskretisierung einer gew{\"u}nschten kontinuierlichen Wichtungsfunktion dient ein neuer, nicht-iterativer Algorithmus, der aus den Eingangsparametern r{\"a}umliche Aufl{\"o}sung und Gesamt-Akkumulationszahl ein geeignetes Abtastschema generiert. Die Lokalisations-Eigenschaften der Dichte-Wichtung wurden ausf{\"u}hrlich analysiert und mit den etablierten Phasenkodierschemata verglichen. Die Dichte-gewichtete k-Raumabtastung kombiniert die Vorteile der Akquisitions-gewichteten Phasenkodierung mit einem maximierten Bildbereich. So kann bei k{\"u}rzeren Experimentdauern ein deutlicher Gewinn an Lokalisationsqualit{\"a}t erzielt werden, ohne dabei die Vorteile einer reinen Phasenkodierung aufzugeben. F{\"u}r die Dichte-gewichtete Phasenkodierung gibt es ein weites Anwendungsfeld. Sie wurde im Rahmen dieser Arbeit in mehreren vorklinischen Studien erfolgreich eingesetzt. Die theoretisch zu erwartenden Vorteile bez{\"u}glich der Lokalisationseigenschaften best{\"a}tigten sich experimentell. Im Bereich der spektroskopischen 31P-NMR-Bildgebung in vivo erwies sich die Dichte-Wichtung als deutlich bessere Alternative zur Akkumulations-Wichtung. Die Einfaltungen des starken Brustmuskelsignals, welche im bisher verwendeten 31P CSI Protokoll den Informationsgehalt der Metabolitenkarten beeintr{\"a}chtigt hatten, konnten unterdr{\"u}ckt werden. In der 23Na-NMR-Bildgebung am Herzen wurde das DW Abtastschema eingesetzt, um die Verbesserung der Lokalisationsqualit{\"a}t durch Akquisitions-Wichtung erstmals auch in der 23Na-NMR-Bildgebung am menschlichen Herzen zu nutzen. Es konnte gezeigt werden, daß die DW Methode deutliche Vorteile im Vergleich zu den herk{\"o}mmlichen Abtastungen liefert. Mit der DW Methode gelang es, 23Na-Bilder des menschlichen Herzens von bisher unerreichter Qualit{\"a}t zu erzeugen. Insgesamt wurde mit der Dichte-gewichteten k-Raumabtastung in der vorliegenden Arbeit eine flexible und effiziente Art der Akquisitionswichtung entwickelt. Zus{\"a}tzlich zu einer deutlichen Verbesserung der Lokalisationsqualit{\"a}t bei optimaler Empfindlichkeit wird mit DW auch die Optimierung des abdeckbaren Bildbereichs erreicht. Somit bietet DW im Vergleich zum Akkumulations-gewichteten Experiment eine gr{\"o}ßere Flexibilit{\"a}t bei der Wahl der experimentellen Parameter Aufl{\"o}sung und Experimentdauer. Dar{\"u}ber hinaus ist das DW Abtastschema potentiell f{\"u}r jedes NMR-Bildgebungsexperiment mit niedriger r{\"a}umlicher Aufl{\"o}sung von Nutzen.}, subject = {Herzfunktionsdiagnostik}, language = {de} }