@phdthesis{Filser2012, author = {Filser, J{\"o}rg}, title = {Mislokalisation von Nup214/CAN auf beiden Seiten des Kernporenkomplexes in akuten myeloischen Leuk{\"a}mien - Eine erstmalige Darstellung des DEK-CAN Fusionsproteins auf der nukleoplasmatischen Seite des Zellkerns}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das elementare Kennzeichen der eukaryontischen Zelle ist der Zellkern, in welchem die Erbinformation in Form der DNA vorliegt. Dieser ist von einer {\"a}ußeren Kernh{\"u}lle umgeben, welche kontinuierlich in das endoplasmatische Retikulum {\"u}bergeht. An der inneren Kernh{\"u}lle setzt die Kernlamina an. Unterbrochen wird die Kernh{\"u}lle durch die Kernporen. Diese bestehen aus Untereinheiten, welche als Nukleoporine bezeichnet werden. Eine wesentliche Aufgabe der Kernporen ist der Transport von Makromolek{\"u}len, welche durch spezifische Transportsignalsequenzen gekennzeichnet sind. Es mehren sich die Hinweise, dass die Nukleoporine nicht allein f{\"u}r den Kerntransport verantwortlich sind, sondern auch regulatorische Eigenschaften bei Mitose, der Expression von Proteinen und der Stabilisierung des Genoms {\"u}bernehmen. Nach der Entdeckung der Philadelphia Translokation bei der chronisch myeloischen Leuk{\"a}mie wurden eine Reihe weiterer chromosomaler Translokationen im Rahmen von h{\"a}matologischen Neoplasien beschrieben. Hierbei sind auch Nukleoporine involviert. Es entstehen Fusionsproteine, welche ein neues Verteilungsmuster der Proteine erzeugen und m{\"o}glicherweise auch neue Funktionen innehaben. Nup214/CAN ist ein Onkogen, welches in akuten myeloischen Leuk{\"a}mien mit einer chromosomalen Translokation einhergeht t(6;9). Diese Translokation t(6;9) ist mit einer schlechteren Prognose f{\"u}r den Patienten verbunden. Der genaue onkogene Mechanismus ist noch nicht ausreichend verstanden. Ziel dieser Doktorarbeit war die Frage, welches Verteilungsmuster Nup214 als Fusionsprotein mit einer ver{\"a}nderten NLS in Leuk{\"a}miezellen der chromosomalen Translokation t(6;9) aufweist, zu beantworten. Zu diesem Zweck wurden die Fusionsproteinfragmente DEK, CAN Mitte und CAN 80/81 in E. coli exprimiert, aufgereinigt und der Herstellung eines spezifischen Antik{\"o}rpers zugef{\"u}hrt. Hierzu wurden die mit den Proteinfragmenten transfizierten E. coli amplifiziert. Nach Lyse der Zellen wurden die Proteinfragmente elektrophoretisch getrennt und den ermittelten Molekulargewichten zugeordnet. Mit Hilfe einer Affinit{\"a}tschromatographie und einem Proteintransfer auf Nitrozellulosemembran wurde mit polyvalentem Serum eine Affinit{\"a}tsreinigung des Antik{\"o}rpers durchgef{\"u}hrt. Dadurch konnten spezifische Antik{\"o}rper generiert werden, welche in der Immunfloureszenz die physiologischen Verteilungsmuster zeigten. In einem nachfolgenden Schritt konnte in Kooperation mit dem Biologischen Institut Basel mittels Immuno-Gold-Lokalisation von Nup214/CAN in Leuk{\"a}miezellen mit einer chromosomalen Translokation t(6;9) erstmalig die Lokalisation des Proteins auf zytoplasmatischer und nukleoplasmatischer Seite einer Kernpore gezeigt werden. Dies legt die Vermutung nahe, dass es durch diese Mislokalisation zu einer St{\"o}rung des nukle{\"a}ren Transports kommen kann, der wiederum zu einem Wachstumsvorteil oder einer Inhibition der Apoptose der Leuk{\"a}miezellen f{\"u}hrt.}, subject = {Kernpore}, language = {de} } @phdthesis{Hacker2010, author = {Hacker, Christian}, title = {Beteiligung des Major Vault Proteins an der Kernporenkomplexbildung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51279}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In die Kernmembran von Eukaryoten sind Kernporenkomplexe eingelagert. Diese stellen die einzige Verbindung zwischen dem Nukleo- und Zytoplasma dar und vermitteln den gerichteten Transport von Proteinen und Ribonukleoproteinpartikeln {\"u}ber die Kernh{\"u}lle. Durch vorangehende Versuche unserer Arbeitsgruppe konnte gezeigt werden, dass es experimentell m{\"o}glich ist, die Bildung einer kontinuierlichen Doppelmembran von der Insertion der Kernporenkomplexe zu trennen (Ewald et al., 1997). Dabei spielen verschiedene im Extrakt enthaltene Membranfraktionen eine Rolle. Erst k{\"u}rzlich wurden in unserer Arbeitsgruppe zwei unterschiedliche Membranfraktionen aus Xenopus Extrakt isoliert, die aufgrund ihrer Dichte als 40\% und 30\% Membranfraktion benannt wurden. Massenspektrometrische Untersuchungen zeigten, dass sich in der 30\% Membranfraktion, welche f{\"u}r die Kernporenkomplexbildung verantwortlich zu sein scheint, das Major Vault Protein (MVP) befindet. MVP ist Hauptbestandteil der Vault-Komplexe, großer tonnenf{\"o}rmiger Ribonukleoproteinpartikel, denen bislang eine Vielzahl von zellul{\"a}ren Funktionen zugeordnet wurden, die meisten davon jedoch noch stark debattiert. Vaults k{\"o}nnten wom{\"o}glich eine Rolle als Transporter {\"u}ber die Kernporenkomplexe spielen und wurden schon mehrfach mit dem Aufbau einer multiplen Arzneimittelresistenz in Verbindung gebracht. Die Beteiligung von MVP bei der Bildung der Kernporenkomplexe ist eine neue zellul{\"a}re Funktion und sollte deshalb in dieser Arbeit n{\"a}her untersucht werden. In dieser Arbeit wurden zun{\"a}chst die 40\% und 30\% Membranfraktionen auf ihr unterschiedliches Verhalten bei der Bildung der Kernh{\"u}lle separat und in Kombination genauer untersucht. Dabei zeigte sich, dass die 40\% Membranfraktion an Chromatin bindet und eine kontinuierliche Doppelmembran aufbaut. Die 30\% Membranfraktion konnte alleine nicht an Chromatin binden, induzierte aber in der durch die 40\% Membranfraktion gebildeten Doppelmembran den Aufbau von Kernporenkomplexen. Durch Immunfluoreszenzaufnahmen und ultrastrukturelle Untersuchungen wurde belegt, dass das an der 30\% Membranfraktion assoziierte MVP f{\"u}r die Bildung von Kernporenkomplexen verantwortlich war. Ferner konnten wir zeigen, dass sowohl MVP als auch Vault-Partikel die de novo Insertion von Kernporenkomplexen in kontinuierliche Doppelmembranen induzieren konnten. Die molekularen Mechanismen der Kernporenkomplexbildung durch MVP wurden mit Hilfe von artifiziellen Lipidmembranen analysiert. Anhand von unilamellaren Liposomen und elektronenmikroskopischen Aufnahmen konnte gezeigt werden, dass MVP die Lipidstruktur beeinflussen und perforieren kann. Zudem l{\"o}ste MVP die Bildung von Poren in schwarzen Lipidmembranen aus und f{\"u}hrte zur Messung von Str{\"o}men durch Einzelkanalmessungen {\"u}ber die entstandenen Poren. Um die bei dem Prozess der Kernporenkomplexbildung beteiligten Bindungspartner von MVP zu identifizieren, wurden mehrere Protein-Protein-Bindungsstudien durchgef{\"u}hrt. Unter den ermittelten MVP-Bindungspartnern ließen sich keine Nukleoporine mit dem Sequenzmotiv FXFG identifizieren, es ist jedoch nicht auszuschließen, dass MVP bei der Bildung der Kernporenkomplexe mit anderen Nukleoporinen interagiert. Da eine fr{\"u}here Arbeit die Bedeutung von Mikrotubuli bei der Bildung der Kernporenkomplexe aufzeigte (Ewald et al., 2001), wurden in dieser Arbeit die Interaktionen der isolierten 40\% und 30\% Membranfraktionen und von MVP mit dem Mikrotubulinetzwerk n{\"a}her analysiert. Dabei zeigte sich, dass nur die 30\% Membranfraktion mit Mikrotubuli interagierte und eine Inhibition der Mikrotubulipolymerisation durch Colchizin den Einbau von Kernporenkomplexen verhinderte. Im Gegensatz dazu interagierten die 40\% Membranvesikel nicht mit Mikrotubuli und daher hat eine Colchizin-induzierte Inhibition der Mikrotubulipolymerisation keinen Effekt auf den Aufbau einer kontinuierlichen Doppelmembran. Durch immunfluoreszenzmikroskopische Untersuchungen konnte zudem gezeigt werden, dass die Lokalisation von MVP an der Kernh{\"u}lle ebenfalls Abh{\"a}ngig von Mikrotubuli ist. Um zu demonstrieren, dass die MVP-induzierte Kernporenkomplexbildung im zellfreien System abh{\"a}ngig vom Transport von MVP zur Kernh{\"u}lle ist, wurde die Zugabe von MVP zu porenlosen Kernen nach einer Colchizin-Behandlung analysiert. Hierbei konnte belegt werden, dass MVP Mikrotubuli auch ben{\"o}tigt, um die Bildung von Kernporenkomplexen in der Kernmembran zu initiieren. Da Mikrotubulifilamente im zellfreien System mit ihren Plus-Enden gegen die Chromatinoberfl{\"a}che gerichtet sind, sollten f{\"u}r den gerichteten Transport zum Chromatin Motorproteine der Kinesin-Familie eine Rolle spielen. Durch die Inhibition von Mklp2, einem mitotischen Kinesin, konnte der Aufbau der Kernporenkomplexe durch MVP in porenlosen Kernen blockiert werden.}, subject = {Ribonucleoproteine}, language = {de} }