@phdthesis{Zuern2009, author = {Z{\"u}rn, Alexander}, title = {Spezifische Markierungsverfahren von Rezeptoren mit kleinen Fluorophoren zur Analyse der Rezeptoraktivierung mittels FRET}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35961}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Es gibt viele Hinweise, dass G-Protein-gekoppelte Rezeptoren bei ihrer Aktivierung durch einen Agonisten ligandenselektive Konformationen eingehen. Ein tats{\"a}chlichen Beleg hierf{\"u}r konnte bisher in lebenden Zellen noch nicht erbracht werden. Zu diesem Zweck wurde in dieser Arbeit ein Fluoreszenz-Resonanz-Energie-Transfer (FRET)-basierter Ansatz gew{\"a}hlt, um ligandenselektive Konformationen in der dritten intrazellul{\"a}ren Schleife des \&\#945;2a-adrenergen Rezeptors (\&\#945;2a-AR) in lebenden Zellen darzustellen. Dazu wurden Rezeptorsensoren erstellt, welche jeweils ein CFP am Ende des C-Terminus trugen und in der dritten intrazellul{\"a}ren Schleife an verschiedenen Stellen mit einem Tetracysteinmotiv versehen wurden. Drei Konstrukte wurden verglichen, die das Tetracysteinmotiv N-terminal in der N{\"a}he der Transmembrandom{\"a}ne V (I3-N), in der Mitte der dritten intrazellul{\"a}ren Schleife (I3-M) beziehungsweise C-terminal in der N{\"a}he der Transmembrandom{\"a}ne VI (I3-C) trugen. Die drei Rezeptorsensoren unterschieden sich hinsichtlich ihrer Ligandenbindung sowie ihrer G-Proteinaktivierung nicht vom Wildtyp \&\#945;2a-AR. Durch das Tetracysteinmotiv ist es m{\"o}glich, den Rezeptor spezifisch mit dem niedermolekularen Fluorophor FlAsH (fluorescein arsenical hairpin binder) zu markieren, welcher als Akzeptor f{\"u}r den Donor CFP in FRET-Experimenten dient. Die {\"A}nderung des FRET-Signals zwischen den beiden Fluorophoren, das durch den vollen Agonist Norepinephrin ausgel{\"o}st wurde, war bei allen drei Rezeptorsensoren vergleichbar. Der starke partielle Agonist Clonidin war ebenfalls in der Lage, in allen drei Konstrukten ein {\"a}hnliches FRET-Signal hervorzurufen. Dagegen zeigte der partielle Agonist Dopamin an dem Konstrukt I3-N ein signifikant schw{\"a}cheres Signal, als an I3-C. Die schwachen partiellen Agonisten Octopamin und Norphenephrin konnten an den Konstrukten I3-N und I3-M keine {\"A}nderung des FRET-Signals bewirken, wobei an I3-C eine deutliche Signal{\"a}nderung detektiert wurde. Dies legt nahe, dass die Transmembrandom{\"a}ne V bei der Aktivierung des Rezeptors eine kleinere Bewegung eingeht als die Transmembrandom{\"a}ne VI, und best{\"a}tigt damit ein auf R{\"o}ntgenstrukturanlysen basierendes Modell der Rezeptorbewegung. Außerdem wurden die Aktivierungskinetiken f{\"u}r die Agonisten Norepinephrin und Dopamin verglichen. Hierbei konnte gezeigt werden, dass die durch Norepinephrin ausgel{\"o}ste Bewegung an allen beobachteten Punkten gleich schnell war. Im Gegensatz dazu aktivierte Dopamin I3-C und I3-M ca. 1,5-mal langsamer, als Norepinephrin. F{\"u}r das I3-N Konstrukt wurde sogar eine 3-mal langsamere Aktivierung gemessen. Diese Daten zeigen, dass unterschiedliche Agonisten in der dritten intrazellul{\"a}ren Schleife spezifische Konformationen ausl{\"o}sen k{\"o}nnen. Die Untersuchungen zur Rezeptorbewegung im ersten Teil dieser Arbeit wurde mit dem kleinen Fluorophor FlAsH in Kombination mit einer großen GFP-Variante durchgef{\"u}hrt. Im zweiten Teil dieser Arbeit wurde eine Methode entwickelt, bei der es m{\"o}glich ist Proteine spezifisch mit beiden kleinen Fluorophoren FlAsH und ReAsH in einer lebenden Zelle zu markieren. Hierf{\"u}r wurden zwei Tetracysteinmotive, CCPGCC und FLNCCPGCCMEP, gew{\"a}hlt, an die beide kleine Fluorophore kovalent binden. Durch Verdr{\"a}ngungsexperimente mit BAL konnte gezeigt werden, dass FlAsH f{\"u}r beide Motive eine dreifach h{\"o}here Affinit{\"a}t besitzt, als ReAsH. Dabei besitzt das FLNCCPGCCMEP-Motiv jedoch eine dreifach h{\"o}here Affinit{\"a}t zu dem jeweiligen Fluorophor besitzt als CCPGCC. Durch Ausnutzung dieser Affinit{\"a}tsunterschiede konnte ein Protokoll entwickelt werden, mit dem es m{\"o}glich ist, beide Motive in einer Zelle zu markieren. Dabei werden zun{\"a}chst beide Motive mit ReAsH markiert. Durch anschließendes Waschen mit einer geeigneten Konzentration von BAL wird das ReAsH ausschließlich von der CCPGCC-Sequenz verdr{\"a}ngt, wohingegen die FLNCCPGCCMEP-Sequenz mit ReAsH markiert bleibt. Die nun unbesetzte CCPGCC-Sequenz kann dann anschließend mit FlAsH markiert werden, ohne dabei die Bindung des ReAsH an die FLNCCPGCCMEP-Sequenz zu beeinflussen. Um die Funktionalit{\"a}t dieses Protokolls zu {\"u}berpr{\"u}fen, sollten zwei verschiedene Proteine mit unterschiedlicher subzellul{\"a}rer Lokalisation in einer lebenden Zelle spezifisch mit jeweils einem kleinen Fluorophor markiert werden. Hierzu wurden ein PTH-Rezeptor, in dem im C-Terminus die FLNCCPGCCMEP-Sequenz eingebracht wurde, mit ReAsH und ein \&\#946;-Arrestin-2, dem die CCPGCC-Sequenz eingebracht wurde, in Zellen co-exprimiert und gem{\"a}ß dem Protokoll mit FlAsH und ReAsH markiert. Beide Proteine konnten spezifisch markiert werden, wobei der mit ReAsH markierte PTH-Rezeptor eine deutliche Lokalisation in der Zellmembran zeigte. Durch sequentielle Exzitation konnte in der gleichen Zelle das zytosolisch lokalisierte, mit FlAsH markierte \&\#946;-Arrestin-2 detektiert werden. Wurden die so markierten Zellen mir 1 µM PTH stimuliert, wurde das FlAsH-markierte \&\#946;-Arrestin-2 an die Zellmembran rekrutiert. Somit konnte durch die Entwicklung dieses Protokolls eine duale spezifische Markierung von Proteinen mit zwei kleinen Fluorophoren zu innerhalb einer Zelle erreicht werden.}, subject = {Fluoreszenz-Resonanz-Energie-Transfer}, language = {de} } @phdthesis{Werthmann2009, author = {Werthmann, Ruth}, title = {Echtzeit-Untersuchungen zur Thrombin-abh{\"a}ngigen {\"A}nderung der cAMP-Konzentration in lebenden Endothelzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46066}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Das Endothel bildet eine einschichtige Zellbarriere zwischen Blut und interstitiellem Gewebe, deren Durchl{\"a}ssigkeit entscheidend durch die sekund{\"a}ren Botenstoffe Ca2+ und cAMP reguliert wird. W{\"a}hrend Ca2+ durch eine verst{\"a}rkte Kontraktion der Endothelzellen die Permeabilit{\"a}t erh{\"o}ht, f{\"o}rdert cAMP die Adh{\"a}sion der Zellen und unterst{\"u}tzt somit die Barrierefunktion. Es ist bekannt, dass Thrombin durch einen Anstieg der intrazellul{\"a}ren Ca2+-Konzentration und vermutlich auch durch eine Hemmung der cAMP-Konzentration zu einer Permeabilit{\"a}tserh{\"o}hung f{\"u}hrt. Ziel dieser Arbeit war es, Thrombin-induzierte {\"A}nderungen der cAMP-Konzentration in Echtzeit in lebenden Endothelzellen mittels Fluorescence-Resonance-Energy-Transfer (FRET) zu untersuchen. Hierf{\"u}r wurden Human-Umbilical-Vein-Endothelial-Cells (HUVECs) mit dem FRET-basierten cAMP-Sensor Epac1-camps transfiziert. Die Bindung von cAMP an Epac1-camps f{\"u}hrt zu einer Konformations{\"a}nderung des Sensors und damit zu einer Abschw{\"a}chung des FRET. Mit Hilfe dieses Sensors kann die cAMP-Konzentration mit hoher zeitlicher Aufl{\"o}sung in einzelnen lebenden Zellen gemessen werden. Untersucht wurde der Effekt von Thrombin auf die cAMP-Konzentration in Endothelzellen, deren cAMP-Konzentration durch Stimulierung endogener \&\#946;-Rezeptoren erh{\"o}ht war. Thrombin erniedrigte Ca2+-abh{\"a}ngig die cAMP-Konzentration um ca. 30 \%. Dieser Abfall der cAMP-Konzentration folgte zeitlich verz{\"o}gert dem Thrombin-induzierten Ca2+-Signal. Die cAMP-Konzentration erreichte ca. 30 s nach der Thrombinzugabe ein Minimum und stieg danach wieder an. Durch die Herunterregulierung der durch Ca2+ direkt inhibierten Adenylatzyklase 6 (AC6) mittels siRNA wurde die Thrombin-induzierte Abnahme der cAMP-Konzentration vollst{\"a}ndig aufgehoben. Dies best{\"a}tigte, dass Thrombin durch die Ca2+-vermittelte Inhibierung der AC6 eine Abnahme der cAMP-Konzentration verursacht. Ohne \&\#946;-adrenerge Stimulation f{\"u}hrte die Applikation von Thrombin zu einem langsamen Anstieg der cAMP-Konzentration, der mehrere Minuten anhielt. Dieser cAMP-Konzentrationsanstieg beruhte auf der Ca2+-abh{\"a}ngigen Aktivierung der Phospholipase A2 (PLA2). Diese setzt Arachidons{\"a}ure aus Membranphospholipiden frei, die als Substrat f{\"u}r die Synthese verschiedener Prostaglandine dient. Durch die pharmakologische Beeinflussung von Zyklooxygenasen und Prostazyklinrezeptoren konnte gezeigt werden, dass die Synthese von Prostazyklin und die anschließende Stimulation Gs-gekoppelter Prostazyklinrezeptoren zum Thrombin-induzierten Anstieg der cAMP-Konzentration f{\"u}hrte. Da die Physiologie der Endothelzellen im Gef{\"a}ß stark von Faktoren aus der unmittelbaren Umgebung beeinflusst wird, ist die Messung der {\"A}nderungen der cAMP-Konzentration in Endothelzellen, die sich innerhalb eines Gewebes befinden, von sehr großer Bedeutung. Deshalb war die Generierung transgener M{\"a}use mit einer gewebespezifischen Expression des FRET-Sensors Epac1-camps in Endothelzellen ein weiteres Ziel dieser Arbeit. Durch Anwendung eines Cre-Rekombinase/loxP-Ansatzes konnten transgene M{\"a}use generiert werden, die Epac1-camps spezifisch in Endothelzellen exprimierten. An isolierten pulmon{\"a}ren Endothelzellen konnte die Funktionalit{\"a}t des transgen exprimierten Sensors Epac1-camps nachgewiesen werden. Die Echtzeitmessung der Thrombin-induzierten {\"A}nderungen der cAMP-Konzentration verdeutlichte ein zeitlich sehr komplexes Wechselspiel zwischen Ca2+- und cAMP-Signalen, das die Barrierefunktion des Endothels maßgeblich beeinflussen wird. Die transgene Expression von Epac1-camps in Endothelzellen erm{\"o}glicht in Zukunft die Untersuchung der Thrombin-verursachten {\"A}nderungen der cAMP-Konzentration und der Permeabilit{\"a}t innerhalb eines intakten Gef{\"a}ßes.}, subject = {Cyclo-AMP}, language = {de} } @phdthesis{Vielreicher2008, author = {Vielreicher, Martin Christian}, title = {Fluoreszenz-mikroskopische Untersuchung der Inaktivierung der Tyrosinkinase SRC im Integrin alphaIIb-beta3 -Signalweg}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26743}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Essentiell f{\"u}r die Blutstillung (Haemostase) ist die Thrombozyten- oder Blutplaettchen-Adhaesion und die Thrombus-Bildung. Beide Vorgaenge werden hauptsaechlich durch den Thrombozyten-Rezeptor Integrin alphaIIb-beta3 vermittelt. Nach Bindung des Liganden Fibrinogen aendert sich die Rezeptor-Konformation, Integrine assoziieren und ein intrazellulaeres Signalnetzwerk wird aktiviert, welches die Organisation des Aktin-Zytoskeletts steuert. Diese Zytoskelett-Reorganisationen sind Grundlage f{\"u}r zellulaere Adhaesions- und Aggregations-Prozesse. Die Signalvermittlung vom Integrin zum Zytoskelett wird durch die Protein-Tyrosinkinase Src eingeleitet, deren Aktivitaetszustand den Signalweg reguliert. Bei der Src-Aktivierung wird Tyrosin 418 durch Autokatalyse phosphoryliert. Die Kinase muss jedoch wieder inaktiviert werden. Dies {\"u}bernimmt in Plaettchen ausschliesslich die Tyrosinkinase Csk (C-terminale Src Kinase) durch Phosphorylierung von Tyrosin 529 im C-terminalen Ende des Proteins. Die Csk-vermittelte Inaktivierung von Src stellt den entscheidenden Kontrollschritt des alphaIIb-beta3-vermittelten Signalwegs dar. Obwohl bekannt ist, dass die Src-Aktivierung bei der Zelladhaesion an den Zellraendern der Lamellipodien geschieht und man den Mechanismus und die Kinetik der Src-Csk Interaktion genauer versteht, ist bislang immer noch unbekannt, wo und wie Src inaktiviert wird bzw. welche Rolle der Src-Inaktivierung genau zukommt. FRET (Fluoreszenz-Resonanz-Energie-Transfer) ist ein physikalischer Effekt, mit dem Interaktionen beliebiger fluoreszenzmarkierter Proteine mikroskopisch detektiert werden koennen. Diese Technik wurde genutzt, um die Src-Csk-Interaktion waehrend der alphaIIb-beta3-vermittelten Fibrinogen-Adhaesion in einer etablierten Thrombozyten-Modellzelllinie (A5-CHO) direkt visualisierbar zu machen. Es zeigten sich starke Src-Csk Interaktionen (FRET-Signale) an den Zellraendern aktiver Lamellipodien und zusaetzlich in Fokalkontakten, wo beide Proteine mit Vinculin, einem Fokalkontakte-Marker, co-lokalisierten. Die Proteininteraktionen folgten einem hochdynamischen Ablauf. Nach der Akkumulation der Src-Csk Komplexe an den Zellraendern wanderten sie in Abstaenden von 2-3 Minuten nach innen, fragmentierten und bildeten schliesslich stabile Fokal-Adhaesionen. FRET-Signale an den Zellraendern fanden sich vor allem in ruhenden Lamellipodien bzw., waehrend des Lamellipodien-R{\"u}ckzugs, in wachsenden Lamellipodien traten die FRET-Signale dort dagegen nicht auf. In unabhaengigen biochemischen Tests im Zeitfenster der FRET-Beobachtungen wurde ein spezifischer Anstieg der Src-Tyr529-Phosphorylierung (Inaktivierung) und eine parallele Abnahme der Src-Tyr418-Phosphorylierung (Aktivierung) gemessen. Weiterf{\"u}hrende Ergebnisse lieferten Versuche mit Src- und Csk-Mutanten. Die Co-Expression von Wildtyp-Src mit Kinase-inaktivem CskK222R hatte weder einen Effekt auf die Adhaesion und Ausbreitung der Zellen noch auf die Praesenz von FRET, es aenderte sich jedoch drastisch die zellulaere Verteilung der FRET-Signale sowie das Wachstum und die Form der Lamellipodien. Die Co-Expression von Wildtyp-Csk mit konstitutiv aktivem SrcY529F verursachte dagegen eine stark verringerte Adhaesionsfaehigkeit und Hemmung der Lamellipodien-Bildung. Die Fokal-Adhaesionspunkte in diesen Zellen waren sehr schwach und ueberdimensioniert und lagen ungeordnet verteilt in der Adhaesionsebene. Zusaetzlich verursachte SrcY529F eine starke Ueberaktivierung des Zytoskeletts und das fast vollstaendige Verschwinden der FRET-Signale. Die ermittelten Daten zeigen, dass die enge Kontrolle der Src-Aktivitaet durch Csk eine bedeutende Rolle f{\"u}r die funktionelle Zell-Adhaesion and -Ausbreitung spielt. Co-Immunpraezipitations-Resultate und Messungen der Menge an markiertem Protein in Zellen, in welchen FRET detektierbar war, untermauern zusaetzlich unsere These, zum ersten Mal die Src-Regulation durch Csk in lebenden Zellen direkt beobachtbar gemacht zu haben. Dieser neue FRET-Ansatz kann auch als Reporter-System f{\"u}r Prozesse der Src-Inaktivierung in anderen Signalwegen und Zellen angewendet werden. Das Messprinzip kann weiterhin auf das Studium der Inaktivierung weiterer Mitglieder der Familie der Src-Kinasen (in verschiedensten Signalwegen) erweitert werden.}, subject = {Antigen CD41}, language = {de} } @phdthesis{Schickinger2008, author = {Schickinger, Stefanie}, title = {Funktionsanalyse alpha2-adrenerger Rezeptoren auf molekularer und transgener Ebene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31667}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {alpha2-adrenerge Rezeptoren, von denen drei verschiedene Subtypen (alpha2A, alpha2B, alpha2C) kloniert wurden, geh{\"o}ren zur Familie der G-Protein-gekoppelten Rezeptoren und vermitteln vielf{\"a}ltige physiologische Funktionen der Transmitter Adrenalin und Noradrenalin. Im Rahmen dieser Arbeit sollte untersucht werden, inwieweit Rezeptorsubtypen, die subzellul{\"a}re Lokalisation von Rezeptoren oder der Differenzierungsstatus einer Zelle f{\"u}r die funktionelle Diversit{\"a}t der alpha2-Rezeptor-Effekte in vivo verantwortlich sind. Im ersten Teil des Projektes wurde ein transgenes Mausmodell untersucht, bei dem selektiv alpha2A-Rezeptoren unter Kontrolle des Dopamin-beta-Hydroxylase Promotors in adrenergen Neuronen exprimiert wurden. In diesem Modell sollte getestet werden, ob ein einzelner Rezeptorsubtyp in den verschiedenen Neuronen des sympathischen Nervensystems in vivo identische Funktionen hat. Transgene alpha2A-Rezeptoren hemmten in vivo zwar die Freisetzung von Noradrenalin aus sympathischen Nervenfasern nicht aber die Exozytose von Adrenalin aus dem Nebennierenmark. Deshalb stellte sich die Frage, ob die Rezeptorfunktion von der Morphologie, dem Differenzierungsstatus der Zellen oder von der subzellul{\"a}ren Lokalisation der Rezeptoren abh{\"a}ngt. Hierf{\"u}r wurden alpha2A-Rezeptoren durch Varianten des gr{\"u}n fluoreszierenden Proteins markiert und mittels FRET-Fluoreszenzmikroskopie untersucht. In PC12 Ph{\"a}ochromozytomzellen, die durch NGF zum Auswachsen neuronaler Forts{\"a}tze stimuliert wurden, waren die Agonist-bedingten Konformations{\"a}nderungen von alpha2A-Rezeptoren jedoch weder vom Differenzierungsstatus der Zellen noch von deren subzellul{\"a}rer Lokalisation abh{\"a}ngig. Lediglich in transient transfizierten Zellen waren im Vergleich zu stabil transfizierten Zellen h{\"o}here Agonist-Konzentrationen zur Rezeptoraktivierung erforderlich. Diese Befunde zeigen, dass zus{\"a}tzlich zur Diversit{\"a}t der Rezeptorsubtypen auf Proteinebene der zellul{\"a}re Kontext, in dem ein Rezeptor exprimiert wird, eine ganz wesentliche Rolle f{\"u}r dessen Funktion spielt.}, subject = {Fluoreszenz-Resonanz-Energie-Transfer}, language = {de} } @phdthesis{Pollinger2012, author = {Pollinger, Thomas}, title = {Spatiotemporale Organisation der Interaktion von Gq Protein-Untereinheiten und der Phospholipase Cβ3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die G-Protein vermittelte Aktivierung der Phospholipase Cβ (PLCβ) stellt einen prim{\"a}ren Mechanismus dar, um eine Vielzahl von physiologischen Ereignissen zu regulieren, z.B. die Kontraktion glatter Muskelzellen, Sekretion oder die Modulation der synaptischen Transmission. Sowohl Gαq- als auch Gβγ-Untereinheiten sind daf{\"u}r bekannt mit PLCβ Enzymen zu interagieren und diese zu aktivieren. {\"U}ber die Dynamik dieser Interaktion und den relative Beitrag der G-Protein Untereinheiten ist jedoch nur wenig bekannt. Unter Verwendung Fluoreszenz Resonanz Energie Transfer (FRET)- basierter Methoden in lebenden Zellen, wurde die Kinetik der Rezeptor-induzierten Interaktion zwischen Gβγ und Gαq Untereinheiten, die Interaktion von sowohl der Gαq als auch der Gβγ-Untereinheit mit der PLCβ3 und die Interaktion des regulator of G-Protein signaling 2 (RGS2) mit Gαq-Untereinheiten untersucht. Um die Untersuchung der Protein-Protein-Interaktion auf die Zellmembran zu beschr{\"a}nken, wurde die Total-Internal Reflection Fluorescence (TIRF) Mikroskopie angewandt. Zeitlich hoch aufl{\"o}sendes, ratiometrisches FRET-Imaging offenbarte eine deutlich schnellere Dissoziation von Gαq und PLCβ3 nach Entzug purinerger Agonisten verglichen mit der Deaktivierung von Gq Proteinen in der Abwesenheit der PLCβ3. Dieser offensichtliche Unterschied in der Kinetik kann durch die GTPase-aktivierende Eigenschaft der PLCβ3 in lebenden Zellen erkl{\"a}rt werden. Weiterhin zeigte es sich, dass PLCβ3 die Gq Protein Kinetik in einem {\"a}hnlich Ausmaß beeinflusst wie RGS2, welches in vitro deutlich effizienter darin ist, die intrinsische GTPase Aktivit{\"a}t der Gαq-Untereinheit zu beschleunigen. Als Antwort auf die Rezeptorstimulation wurde sowohl eine Interaktion von Gαq-Untereinheiten als auch von Gq-abstammende Gβγ-Untereinheiten mit der PLCβ3 beobachtet. Dar{\"u}ber hinaus zeigte sich auch eine Agonist-abh{\"a}ngige Interaktion von Gαq und RGS2. In Abwesenheit einer Rezeptorstimulation konnte kein spezifisches FRET-Signal zwischen Gq Proteinen und der PLCβ3 oder RGS2 detektiert werden. Zusammengefasst erm{\"o}glichte das ratiometrische FRET-Imaging in der TIRF Mikroskopie neue Einsichten in die Dynamik und Interaktionsmuster des Gq-Signalwegs.}, subject = {TIRF}, language = {de} } @phdthesis{Nuber2010, author = {Nuber, Susanne}, title = {ß-Arrestin/Rezeptor-Interaktionen - Ein endogenes "Werkzeug" ligandenspezifischer Signaltransduktion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die Bedeutung der β-Arrestine als multifunktionelle Adapterproteine GPCR-vermittelter Signaltransduktion hat in den letzten Jahren immer mehr zugenommen. In der vorliegenden Arbeit lag der Schwerpunkt auf der Untersuchung der molekularen Basis und der Ligandenabh{\"a}ngigkeit sowohl der β-Arrestin/Rezeptor-Interaktion als auch β-Arrestin- (un-)abh{\"a}ngiger Signaltransduktionsmechanismen. Im ersten Teil wurde der Einfluß potentieller Phosphorylierungsstellen im C-Terminus des β2AR bzw. im C-Terminus und der TM3 des P2Y1R auf die agonisteninduzierte β-Arrestin/Rezeptor-Interaktion, Internalisierung und Desensibilisierung untersucht. Durch Mutationsanalysen konnten Ser 352/Thr 358 im distalen C-Terminus des P2Y1R als Schl{\"u}sselstellen der β-Arrestin-Translokation und Internalisierung identifiziert werden, w{\"a}hrend ein oder mehrere Phosphorylierungsstellen im proximalen P2Y1R C-Terminus die molekulare Grundlage der Rezeptordesensibilisierung darstellen. Dar{\"u}ber hinaus machte die Anwendung verschiedener PKC- oder CaMK-Inhibitoren sowie der Einsatz des PKC-Aktivators PMA deutlich, dass die P2Y1R-Desensibilisierung und β-Arrestin-Translokation durch unterschiedliche Kinasen kontrolliert werden. Zudem konnte mit Hilfe der FRET-Technik gezeigt werden, dass die Phosphorylierungsstellen zwischen den Positionen 355 und 364 im proximalen β2AR C-Terminus essentielle Bereiche der β-Arrestin-Translokation darstellen. Im zweiten Teil der vorliegenden Arbeit wurden Agonisten am β2-adrenergen Rezeptor bzw. dem P2Y2R auf ihre F{\"a}higkeit hin untersucht verschiedene mit dem jeweiligen Rezeptor verkn{\"u}pfte G-Protein- bzw. β-Arrestin-Funktionen in unterschiedlichem Ausmaß zu aktivieren („biased agonism"). Da eine solche ligandenselektive Aktivierung rezeptorvermittelter Signalwege bis dato nur mit synthetischen Liganden detailliert untersucht wurde, galt das besondere Interesse der Analyse der durch die endogenen Substanzen induzierten Signalmuster. Die Betrachtung der Noradrenalin- bzw. Adrenalin-induzierten β-Arrestin/Rezeptor-Interaktion, β-Arrestin2-Translokation, Rezeptorinternalisierung, G-Protein-Aktivierung sowie cAMP-Produktion am β2AR machte deutlich, dass es sich beim Ph{\"a}nomen des „biased agonism" um einen endogenen Mechanismus handelt. Dar{\"u}ber hinaus konnte gezeigt werden, dass auch zur Tokolyse eingesetzte β2AR-Agonisten spezifische Signalmuster induzieren. Die Beobachtung, dass UTP und ATP sowohl unterschiedliche β-Arrestin1/2-Translokationsals auch ERK-Aktivierungsmuster am P2Y2R induzieren best{\"a}rkte das Konzept des „biased agonism" als endogenes Ph{\"a}nomen. Das ligandenabh{\"a}ngige β-Arrestin-Translokationsverhalten des P2Y2R ließ zudem die agonistenbedingte Zuteilung des Rezeptors zu den „Klasse A" oder „Klasse B" Rezeptoren zu. Die detaillierte Untersuchung agonisteninduzierter Rezeptor/Effektor-Interaktionen und Signalmuster d{\"u}rfte helfen die Anwendung klinisch relevanter Substanzen zu optimieren.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {de} } @phdthesis{Froelich2012, author = {Fr{\"o}lich, Nadine}, title = {Analyse der µ-Opiatrezeptoraktivierung und Signaltransduktion in lebenden Zellen mittels FRET-Mikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der Fluoreszenz-Resonanz-Energie-Transfer ist ein Ph{\"a}nomen, welches erstmals 1948 von Theodor F{\"o}rster beschrieben wurde. Mit der Entwicklung von Fluoreszenzproteinen konnten in Kombination mit Mikroskopietechniken Einblicke in zellbiologische Vorg{\"a}nge gewonnen werden, die durch biochemische oder physiologische Experimente nicht m{\"o}glich sind. Dabei spielt die hohe zeitliche und r{\"a}umliche Aufl{\"o}sung eine wichtige Rolle. Auf dem Forschungsgebiet der GPCR, welche die gr{\"o}ßte Gruppe von Membranproteinen bei den S{\"a}ugetieren darstellen, wurden insbesondere Erkenntnisse {\"u}ber Konformations{\"a}nderungen der Rezeptoren, die Kinetik der Rezeptoraktivierung und die Interaktion mit intrazellul{\"a}ren Signalproteinen gewonnen. Der µ-Opioidrezeptor geh{\"o}rt zur Familie der GPCR und stellt aufgrund seiner analgetischen Wirkungen eine wichtige pharmakologische Zielstruktur dar. Das Ziel dieser Arbeit war sowohl den Rezeptor als auch seine Signalwege mittels FRET-Mikroskopie zu untersuchen. Zun{\"a}chst sollte ein intramolekularer FRET-Sensor des µ-Opioidrezeptors entwickelt werden, dazu wurden basierend auf den Kenntnissen {\"u}ber die Terti{\"a}rstruktur und dem Aufbau bereits bekannter GPCR-Sensoren verschiedene Rezeptorkonstrukte kloniert. Bei den Konstrukten wurden entweder zwei Fluoreszenzproteine oder ein Fluoreszenzprotein und ein Fluorophor-bindendes Tetracysteinmotiv kombiniert. Auch die Positionen der eingef{\"u}gten Sequenzen wurden in den intrazellul{\"a}ren Dom{\"a}nen variiert, da der Rezeptor auf die Modifikationen mit beeintr{\"a}chtigter Membranlokalisation reagierte. Durch die Optimierung wurden Rezeptoren konstruiert, die an der Zellmembran lokalisiert waren. Jedoch zeigte keines der Rezeptorkonstrukte Funktionalit{\"a}t im Hinblick auf die Rezeptoraktivierung. Im zweiten Teil wurden die pharmakologischen Effekte der Metabolite von Morphin am humanen µ-Opioidrezeptor systematisch analysiert. Dazu wurde die F{\"a}higkeit der Metabolite, Gi-Proteine zu aktivieren und β-Arrestin2 zu rekrutieren, mittels FRET-basierter Messungen an lebenden Zellen untersucht. Außerdem wurde die Affinit{\"a}t der Metabolite zum humanen µ Opioidrezeptor anhand der Verdr{\"a}ngung eines radioaktiven Liganden analysiert. Meine Experimente identifizierten eine Gruppe mit stark agonistischen und eine mit schwach agonistischen Eigenschaften. Die starken Partialagonisten aktivieren den Rezeptor bereits bei nanomolaren Konzentrationen, w{\"a}hrend die schwachen Metabolite den Rezeptor erst bei Konzentrationen im mikromolaren Bereich aktivieren. Die Metabolite Normorphin, Morphin-6-Glucuronid und 6-Acetylmorphin zeigen geringere Potenz als Morphin bei der Gi-Aktivierung aber {\"u}berraschenderweise h{\"o}here Potenz und Effizienz f{\"u}r die β-Arrestin-Rekrutierung. Dies deutet auf eine bevorzugte Aktivierung von β-Arrestin2 hin. Die aus diesen Studien gewonnenen Ergebnisse liefern Hinweise darauf, welche Metabolite bei der Signalverarbeitung am µ Opioidrezeptor in vivo beteiligt sind.}, subject = {Opiatrezeptor}, language = {de} } @phdthesis{Baetz2012, author = {B{\"a}tz, Julia}, title = {FRET-basierte Untersuchungen zur ligandenselektiven Beeinflussung der Rezeptorkonformation durch orthosterische und allosterische Liganden am Beispiel des muskarinischen M2 Acetylcholinrezeptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Zahlreiche experimentelle Befunde lassen vermuten, dass G-Protein gekoppelte Rezeptoren (GPCR) nach ihrer Aktivierung einer ligandenselektiven {\"A}nderung der Rezeptorkonformation unterliegen. Ziel der vorliegenden Arbeit war es dieses Ph{\"a}nomen am Subtyp 2 der muskarinischen Acetylcholinrezeptoren (M2 AChR) zu untersuchen. Muskarinische Acetylcholinrezeptoren (mAChR) k{\"o}nnen in f{\"u}nf Subtypen (M1-M5) unterschieden werden. Durch die Beteiligung der mAChR an zahlreichen physiologischen Prozessen stellen sie wichtige Zielstrukturen pharmakologischer Therapien dar. Da die orthosterische Ligandenbindestelle (= Bindestelle des endogenen Liganden) in allen f{\"u}nf Subtypen hoch konserviert ist, wird ihr pharmakologischer Nutzen derzeit allerdings durch die unselektive Rezeptormodulation und dem damit verbundenen Auftreten unerw{\"u}nschter Arzneimittelwirkungen stark limitiert. Ein Ansatz zur Erzielung subtypselektiver Effekte besteht in der Verwendung allosterischer Modulatoren. Da die allosterische Bindestelle der mAChR eine geringere Sequenzhomologie aufweist, k{\"o}nnen so gezielt einzelne Subtypen der mAChR reguliert werden. Der M2 AChR stellt hinsichtlich allosterischer Modulation ein gut charakterisiertes Modellsystem dar. F{\"u}r ihn wurde bereits eine Vielzahl allosterischer Liganden entwickelt. Auch bitopische Liganden, die sowohl einen allosterischen als auch einen orthosterischen Anteil enthalten, wurden f{\"u}r den M2 AChR bereits beschrieben. Im ersten Teil der vorliegenden Arbeit wurden verschiedene FRET-Sensoren des M2 AChR generiert und charakterisiert. Als FRET-Paar wurden das cyan fluoreszierende Protein (CFP) und der niedermolekulare fluorescein-basierte Fluorophor FlAsH (fluorescein arsenical hairpin binder) gew{\"a}hlt. CFP wurde in den Sensoren am Ende des C-Terminus angef{\"u}gt. Die zur Markierung mit FlAsH n{\"o}tige Tetracysteinsequenz wurde in verschiedenen Bereichen der dritten intrazellul{\"a}ren Rezeptorschleife (IL) eingebracht. Die auf diese Weise erstellten Re-zeptorsensoren trugen das Tetracysteinmotiv in der N terminalen (M2i3-N) bzw. in der C terminalen Region (M2i3-C) von IL 3. Die Charakterisierung der Rezeptorsensoren bez{\"u}glich Ligandenbindung, Gi-Protein Aktivierung und β-Arrestin2 Translokation ergab keine signifikanten Unterschiede zwischen M2i3-N, M2i3 C und M2CFP oder Wildtyp M2 AChR. Zun{\"a}chst wurden sowohl unterschiedliche orthosterische, als auch allosterische Liganden hinsichtlich ihrer mittleren effektiven Konzentration und ihrer maximalen Wirkst{\"a}rke an den Rezeptorsensoren untersucht. Mit Hilfe von FRET-Messungen konnte ein superago-nistisches Verhalten des orthosterischen Testliganden Iperoxo gezeigt werden. Die Eigenschaften der allosterischen Substanzen wurden durch Messung der Rezeptordeakti-vierungskinetik und des maximalen Hemmeffekts auf einen vorstimulierten Rezeptor charakterisiert. Alle allosterischen Liganden deaktivierten den vorstimulierten M2 AChR mit einer schnelleren Kinetik als Atropin. Die EC50-Werte der unterschiedlichen Substanzen waren unabh{\"a}ngig von der Markierungsposition im verwendeten Rezeptorsensor vergleich-bar. Ausnahmen bildeten die allosterischen Liganden JK 289, JK 338, ½ W84 und EHW 477, die liganden- und sensorabh{\"a}ngig unterschiedliche mittlere effektive Konzentrationen aufwie-sen. Bei der Untersuchung der Konformations{\"a}nderung des M2 AChR konnte kein liganden-selektiver Unterschied zwischen den FRET-Signalen f{\"u}r 19 getestete orthosterische Liganden beobachtet werden. Dies deutet darauf hin, dass alle orthosterischen Testliganden eine dem Acetylcholin (ACh) vergleichbare {\"A}nderung der M2 AChR Konformation induzier-ten. Um zu untersuchen, ob f{\"u}r die orthosterischen Testliganden eine Korrelation zwischen ihrer maximalen Wirkst{\"a}rke hinsichtlich Rezeptoraktivierung in FRET-Experimenten und der Aktivierung nachgeschalteter Signalwege besteht, wurde die orthosterisch-vermittelte Translokation von β-Arrestin2 mit Hilfe der Konfokalmikroskopie bestimmt. Bis auf 5-Methyl-furmethiodid translozierten alle orthosterischen Liganden β-Arrestin2 in einem Ausmaß, das mit der maximalen Rezeptoraktivierung vergleichbar war. Dagegen rief 5 Methylfurmethiodid verglichen mit dem endogenen Liganden ACh zwar eine ca. halbmaximale Rezeptorakti-vierung, aber nur eine {\"a}ußerst geringe β-Arrestin2 Translokation hervor. Im zweiten Teil der Arbeit wurde der Einfluss verschiedener Allostere auf eine ligandenselektive Konformations{\"a}nderung des M2 AChR untersucht. Die allosterischen Liganden JK 337 und Seminaph beeinflussten den M2i3-C Sensor signifikant st{\"a}rker, als das M2i3-N Konstrukt. Dagegen zeigte EHW 477 eine st{\"a}rkere Beeinflussung der Rezeptorkon-formation des M2i3-N-, als des M2i3-C Sensors. Dies erlaubt die Vermutung, dass JK 337 und Seminaph eine st{\"a}rkere Bewegung unterhalb von Transmembrandom{\"a}ne (TM) 6, als unterhalb von TM 5 hervorriefen. Die Ergebnisse f{\"u}r EHW 477 legen nahe, dass TM 5 eine gr{\"o}ßere Bewegung eingeht, als TM 6. FRET-basierte Untersuchungen der Einfl{\"u}sse der allosterischen Testliganden auf nachgeschaltete Signalwege ergaben, dass sowohl die Akti-vierung des Gi Proteins, als auch die β-Arrestin2 Translokation selektiv durch einzelne allosterische Liganden beeinflusst werden. Auch ein Zusammenhang zwischen Rezeptor-aktivierung und der Regulation nachgeschalteter Signalwege war erkennbar. Allerdings waren auf Grund der Versuchsbedingungen keine quantitativen Aussagen m{\"o}glich. Im Folgenden wurden die bitopischen Liganden Hybrid 1 und 2 (H 1, H 2) hinsichtlich ihres Effekts auf die Konformations{\"a}nderung des M2 AChR untersucht. W{\"a}hrend eine Stimulation mit H 1 vergleichbare FRET-Signale an beiden Sensoren ergab, konnte mit H 2 weder am M2i3-N-, noch an M2i3-C Sensor eine FRET-{\"A}nderung detektiert werden. Um den mangeln-den Effekt der Hybridsubstanzen in FRET-mikroskopischen Untersuchungen aufzukl{\"a}ren, wurden verschiedene Ans{\"a}tze gew{\"a}hlt: Mit kettenverl{\"a}ngerten Derivaten der Hybridsubstanzen konnte in FRET-Messungen eine {\"A}nderung des FRET-Signals detektiert werden. Die Entfernung des allosterischen Bausteins f{\"u}hrte in FRET-Experimenten zu einer verglichen mit dem endogenen Liganden ACh etwa halbmaximalen Aktivierung beider Sensoren. Dagegen resultierte die Mutation der alloste-rischen Bindestelle in nachfolgenden FRET-Untersuchungen mit H 1 und H 2 in keiner Signal{\"a}nderung des FRET-Ratio. Diese Beobachtungen f{\"u}hrten zu der Annahme, dass die Linkerkette, die orthosterischen und allosterischen Baustein der Hybride miteinander verbindet, zu kurz war um eine gleichzeitige Bindung an die allosterische und orthosterische Bindestelle zu erm{\"o}glichen. Ein anderer Erkl{\"a}rungsansatz besteht darin, dass nach Bindung des Orthosters der Kanal zwischen orthosterischer und allosterischer Bindestelle durch die Konformations{\"a}nderung des Rezeptors verschlossen wird, weshalb keine dauerhafte, dualsterische Bindung der Hybridsubstanzen an den M2 AChR m{\"o}glich ist. Im Rahmen der vorliegenden Arbeit ist es gelungen mittels FRET-Experimenten die Existenz einer ligandenselektiven Rezeptorkonformation des M2 AChR mit allosterischen Liganden nachzuweisen. Dar{\"u}ber hinaus konnte auch ein Bezug zum Auftreten einer funktionellen Selektivit{\"a}t mit allosterischen Liganden hergestellt werden. Die Untersuchung von 19 orthosterischen Liganden hinsichtlich ihres Einflusses auf die Rezeptorkonformation des M2 AChR ergab keinen Hinweis auf eine ligandenselektive Konformations{\"a}nderung. Die Betrachtung der orthosterisch-vermittelten Translokation von β-Arrestin2 zeigte, dass zwischen der Effizienz der orthosterischen Testliganden, den M2 AChR zu aktivieren und dem Ausmaß, in dem sie eine β Arrestin2 Translokation induzierten eine direkte Korrelation besteht. Lediglich 5-Methylfurmethiodid rief eine ungleich geringere β-Arrestin2 Translokation hervor, verglichen mit dem Ausmaß an Rezeptoraktivierung. Diese Beobachtung deutet auf die Existenz eines signaling-bias f{\"u}r diesen Liganden hin. Die Untersuchung der dualsterischen Liganden H 1 und 2 bez{\"u}glich ihrer F{\"a}higkeit zur Rezeptoraktivierung ergab, dass erst durch eine Verl{\"a}ngerung der Linkerkette, durch die orthosterischer und alloste-rischer Baustein miteinander verbunden sind eine Konformations{\"a}nderung des M2 AChR hin zu einer aktiven Konformation erreicht werden kann. Es kann somit angenommen werden, dass in den urspr{\"u}nglichen Hybridsubstanzen H 1 und H 2 eine zu kurze Linkerkette, durch die keine dualsterische Bindung der Hybride an die allosterische und orthosterische Bindestelle m{\"o}glich ist, urs{\"a}chlich f{\"u}r die mangelnde Rezeptoraktivierung des M2 AChR war.}, subject = {Muscarinrezeptor}, language = {de} } @phdthesis{Ahles2011, author = {Ahles, Andrea}, title = {Analyse der Aktivierung β-adrenerger Rezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85577}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Funktionalit{\"a}t β1- und β2-adrenerger Rezeptoren wird durch Polymorphismen in ihrer kodierenden Region moduliert. Wir haben uns die Technik des Fluoreszenz-Resonanz- Energie-Transfers (FRET) zu Nutze gemacht, um den Einfluss der am h{\"a}ufigsten vorkommenden Polymorphismen (Ser49Gly und Gly389Arg im β1AR, Arg16Gly und Gln27Glu im β2AR) auf die Rezeptorkonformation nach Aktivierung zu untersuchen. Daf{\"u}r wurden FRET-Sensoren f{\"u}r die beiden βAR-Subtypen mit einem gelb-fluoreszierenden Protein (YFP) sowie einem cyan-fluoreszierenden Protein (CFP oder Cerulean) in der dritten intrazellul{\"a}ren Schleife bzw. am C-Terminus verwendet. Nach Stimulierung der βARSensoren konnte die Aktivierung der polymorphen Rezeptorvarianten in lebenden Zellen in Echtzeit untersucht werden. Dabei behielten die FRET-Sensoren sowohl die Bindungsaffinit{\"a}ten der nativen Rezeptoren als auch eine intakte Funktionalit{\"a}t hinsichtlich der Bildung von sekund{\"a}ren Botenstoffen. Der Vergleich der Aktivierungskinetiken der verschieden polymorphen Varianten des β1AR und β2AR ergab keine signifikanten Unterschiede nach einer einmaligen Stimulation. Es zeigte sich jedoch, dass Rezeptorpolymorphismen die Aktivierungskinetik vorstimulierter βAR erheblich beeinflussen. So konnten wir im Vergleich zur ersten Aktivierung eine schnellere Aktivierung der Gly16-Varianten des β2AR sowie des Gly49Arg389-β1AR feststellen, w{\"a}hrend die Arg16-β2AR-Variante und der Ser49Gly389-β1AR dagegen bei einer wiederholten Stimulation langsamer aktiviert wurden. Diese Ergebnisse lassen auf ein "Rezeptorged{\"a}chtnis" schließen, das spezifisch f{\"u}r bestimmte polymorphe Rezeptorvarianten ist und eine βAR-Subtyp-spezische Auspr{\"a}gung zeigt. Die Ausbildung der unterschiedlichen Aktivierungskinetiken hing von der Interaktion des Rezeptors mit l{\"o}slichen intrazellul{\"a}ren Faktoren ab und bedurfte einer Phosphorylierung intrazellul{\"a}rer Serin- und Threonin-Reste durch G-Protein-gekoppelte Rezeptorkinasen. Die Interaktion mit l{\"o}slichen intrazellul{\"a}ren Faktoren scheint f{\"u}r den β1AR weniger stark ausgepr{\"a}gt zu sein als f{\"u}r den β2AR. Die cAMP-Produktion war f{\"u}r die schneller werdenden, "hyperfunktionellen" Gly16-β2ARVarianten signifikant um mehr als 50\% h{\"o}her im Vergleich zur "hypofunktionellen" Arg16- Variante. Die unterschiedliche Funktionalit{\"a}t spiegelte sich im Therapieausgang bei Tokoysepatientinnen wider, dessen Erfolg mit dem Arg16Gly Polymorphismus verkn{\"u}pft war. Die Daten implizieren eine intrinsische, polymorphismusabh{\"a}ngige Eigenschaft der βAR, die die Aktivierungskinetik der Rezeptoren bei wiederholten Stimulationen determiniert. Diese k{\"o}nnte auch f{\"u}r die zwischen Individuen variierende Ansprechbarkeit auf β-Agonisten und β-Blocker mitverantwortlich sein.}, subject = {Beta-1-Rezeptor}, language = {de} }