@phdthesis{Grodzki2011, author = {Grodzki, David Manuel}, title = {Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten f{\"u}r die klinische Magnetresonanzbildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Stoffe mit schnell zerfallendem Magnetresonanz (MR)-Signal sind mit herk{\"o}mmlichen MR- Sequenzen nicht darstellbar. Solche Stoffe haben meist starke Bindungen, wie im menschlichen K{\"o}rper beispielsweise Sehnen, B{\"a}nder, Knochen oder Z{\"a}hne. In den letzten Dekaden wurden spezielle Sequenzen mit ultrakurzer Echozeit entwickelt, die Signale von diesen Stoffen messen k{\"o}nnen. Messungen mit ultrakurzen Echozeiten er{\"o}ffnen der Kernspintomographie neue Anwendungsgebiete. In dieser Doktorarbeit werden die in der Literatur bekannten Methoden zur Messung mit ultrakurzen Echozeiten untersucht und evaluiert. Es werden zwei neue, in dieser Arbeit entwickelte Ans{\"a}tze vorgestellt, die es zum Ziel haben, bestehende Probleme der vorhandenen Methoden bei robuster Bildqualit{\"a}t zu l{\"o}sen, ohne auf Hardware{\"a}nderungen am Kernspintomographen angewiesen zu sein. Die 'Gradient Optimized Single Point imaging with Echo time Leveraging' (GOSPEL) Sequenz ist eine Single-Point-Sequenz, die im Vergleich zu den bekannten Single-Point-Sequenzen eine stark reduzierte Echozeit erm{\"o}glicht. Es wird gezeigt, dass dadurch ein deutlich besseres Signalzu-Rausch-Verh{\"a}ltnis (SNR) von Stoffen mit schnell zerfallendem Signal erreicht wird. Das Problem der sehr langen Messzeit bei Single-Point-Verfahren wird mit der 'Pointwise Encoding Time reduction with Radial Acquisition' (PETRA) Sequenz gel{\"o}st. Bei diesem Ansatz wird der k-Raum-Außenbereich radial und das k-Raum-Zentrum single-point-artig abgetastet. Durch die Kombination beider Akquisitionsstrategien ist eine schnelle und robuste Bildgebung mit ultrakurzer Echozeit und ohne Hardware{\"a}nderungen m{\"o}glich. Wie bei anderen Ans{\"a}tzen sind bei der PETRA-Sequenz die Bildgebungsgradienten zum Anregungszeitpunkt bereites angeschaltet. Es wird untersucht, welchen Einfluss ungewollte Schichtselektionen auf die Bildgebung haben k{\"o}nnen und ein Korrekturalgorithmus entwickelt, mit dem sich dadurch entstehende Artefakte im Bild beheben lassen. Die Limitationen des Korrekturalgorithmus sowie m{\"o}gliche Artefakte der PETRA-Sequenz werden untersucht und diskutiert. Erste Anwendungsbeispiele der PETRA-Sequenz bei verschiedenen Feldst{\"a}rken und Applikationen werden demonstriert. Wie bei anderen Sequenzen mit ultrakurzen Echozeiten sind die Gradientenaktivit{\"a}ten bei der PETRA- und GOSPEL-Sequenz gering, wodurch die Messung sehr leise sein kann. Lautst{\"a}rkemessungen zeigen, dass bei Messungen mit der PETRA-Sequenz der Ger{\"a}uschpegel um nur ein bis f{\"u}nf dB(A) im Vergleich zum Hintergrundger{\"a}uschpegel steigt. Es wird demonstriert, dass sich dadurch neue Anwendungsgebiete er{\"o}ffnen k{\"o}nnten. Vergleichsmessungen zwischen einer T1-gewichteten PETRA- und einer MPRAGE-Messung weisen Bilder auf, die in Kontrast, Aufl{\"o}sung, SNR und Messzeit vergleichbar sind. Mit den in dieser Arbeit entwickelten Methoden konnten Probleme bestehender Ans{\"a}tze gel{\"o}st und offene Fragen beantwortet werden. Die Ergebnisse k{\"o}nnen helfen, Applikationen von Sequenzen mit ultrakurzen Echozeiten in der klinischen Routine weiter zu etablieren.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{Kaufmann2008, author = {Kaufmann, Ilja}, title = {Funktionelle NMR-Mikroskopie an Pflanzenwurzeln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34150}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Als nicht-invasive Methode bietet die magnetische Kernspinresonanztomographie durch ihre Vielzahl an messbaren Gr{\"o}ßen wie Wassergehalt und Flussgeschwindigkeiten gute Voraussetzungen, um funktionelle Abl{\"a}ufe in Pflanzen und insbesondere Pflanzenwurzeln zu untersuchen. F{\"u}r funktionelle NMR-Mikroskopie notwendige Hardware und Methoden wurden in dieser Arbeit entwickelt und angewendet. Aufgrund der starken Suszeptibilit{\"a}tsunterschiede in den Proben und der notwendigen Zeitaufl{\"o}sung f{\"u}r funktionelle Studien, lag das Hauptaugenmerk dabei auf Turbospinechomethoden (auch als RARE bekannt). Im Rahmen des Hardwareaufbaus wurde ein neuartiges, modulares Probenkopfkonzept entwickelt. Außerdem war es notwendig geeignete Probengef{\"a}ße und Pflanzenhandlingsysteme zu entwerfen, die die Anbringung einer HF-Spule im Wurzelbereich erlauben. F{\"u}r die Auswertung gemessener Parameterkarten wurde eine Software geschrieben, mit der interaktiv Mittelwerte entlang geschlossener Pfade berechnet werden k{\"o}nnen, angepasst an den grob radialsymmetrische Aufbau der Pflanzenwurzeln. Als Grundlage f{\"u}r biologische Aussagen anhand von T1-, T2- und Spindichtekarten wurden aus einer umfangreichen Literaturrecherche die bekannten Zusammenh{\"a}nge zwischen diesen Parametern und physiologischen Gr{\"o}ßen zusammengestellt. Erg{\"a}nzend wurde das Verhalten einer monoexponentiellen Beschreibung der Relaxation von mehr-Kompartimentsystemen und von deren Durchmischung untersucht. Eine Computersimulation der Diffusion zwischen Volumenschichten mit unterschiedlichen Relaxationszeiten wurde implementiert. Damit konnte gezeigt werden, dass die Reichweite der Durchmischung der messbaren Relaxationszeiten bei freier Diffusion abh{\"a}ngig ist von der Diffusionsweite, die nach der Einstein-Smoluchowski-Gleichung aus der jeweils lokalen Relaxationszeit resultiert. Damit ergibt sich eine grunds{\"a}tzliche Limitierung der r{\"a}umlichen Aufl{\"o}sung von Relaxationszeitkarten und auch des jeweiligen Relaxationszeitkontrastes in NMR-Bildern. Daneben erkl{\"a}rt der Effekt der durch Diffusion vermittelten Relaxation auch den hellen Ring, der in NMR-Bildern die Wurzeln in N{\"a}hrl{\"o}sung umgibt. Die haupts{\"a}chliche Anwendung der entwickelten Methodik auf biologische Fragestellungen bestand in der Untersuchung der Reaktion von Maiswurzeln auf Trockenstress. Erstmals konnten dabei im Rahmen dieser Arbeit Kavitationen der Wassers{\"a}ule im Xylem von Wurzeln sowie deren Wiederbef{\"u}llung nach Wiederbew{\"a}sserung der Pflanzen direkt beobachtet werden. Bei der weiteren systematischen Untersuchung zu Kavitationen gelang es auch, die bislang unbekannte Geschwindigkeit zu bestimmen (Gr{\"o}ßenordnung 1mm/min) mit der die kavitierten Bereiche von unten mit einer neuen Wassers{\"a}ule gef{\"u}llt werden. Außerdem konnte mit Hilfe von Flussgeschwindigkeitskarten nachgewiesen werden, dass Gef{\"a}ße mit Kavitationen nach der Wiederbef{\"u}llung ihre volle Funktionalit{\"a}t wiedererlangen k{\"o}nnen. Aus solchen Flusskarten konnte auch der Volumenfluss berechnet und z.B. mit der Transpirationsrate verglichen werden. Die gemessenen T1- und Spindichtekarten bieten viele Hinweise auf die Funktion der unterschiedlichen Gewebetypen der Wurzel w{\"a}hrend des Trockenstresses und bei der Wiederbef{\"u}llung. Insbesondere T1 erwies sich als aussagekr{\"a}ftiger Parameter f{\"u}r die Beurteilung von aufgetretenen Gewebesch{\"a}den. Als Grundlage f{\"u}r zuk{\"u}nftige Studien wurden verschiedene Messungen mit Kontrastmittel im Umgebungsmedium der Wurzeln durchgef{\"u}hrt, sowie eine 3D-Turbospinechosequenz implementiert, mit der auch die interne Struktur der Wurzeln und ihrer Verzweigungen dargestellt werden konnte.}, subject = {Magnetresonanzmikroskopie}, language = {de} }