@phdthesis{Rueckert2023, author = {R{\"u}ckert, Martin Andreas}, title = {Rotationsdriftspektroskopie}, doi = {10.25972/OPUS-26863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268631}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die wachsende Verf{\"u}gbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberfl{\"a}chen er{\"o}ffnet weitreichende M{\"o}glichkeiten f{\"u}r chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molek{\"u}len bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs ver{\"a}ndern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) k{\"o}nnen diese {\"A}nderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molek{\"u}lkonzentrationen m{\"o}glich. MNPs k{\"o}nnen zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal ver{\"o}ffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die r{\"a}umliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung m{\"o}glich, die durch Detektion der beteiligten Molek{\"u}le (Biomarker) Stoffwechselprozesse r{\"a}umlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen M{\"o}glichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode f{\"u}r die induktive Messung der Beweglichkeit von MNPs in fl{\"u}ssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die {\"A}nderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu k{\"o}nnen, welche potentiell um mehrere Gr{\"o}ßenordnungen h{\"o}her sein kann als mit den oben erw{\"a}hnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage f{\"u}r r{\"a}umliche Kodierung vielversprechend. In weiterf{\"u}hrenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren f{\"u}r molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 ver{\"o}ffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gew{\"a}hlt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abh{\"a}ngig von der viskosen Reibung. Aufgrund dieser Abh{\"a}ngigkeit k{\"o}nnen {\"A}nderungen im Reibungskoeffizienten des Partikels {\"u}ber {\"A}nderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs {\"u}ber deren makroskopische Magnetisierung messen zu k{\"o}nnen. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben m{\"o}glich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und k{\"o}nnen nicht wie ein einzelnes Mikropartikel gemessen werden. F{\"u}r die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente n{\"o}tig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit m{\"o}glich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Gr{\"o}ßenordnungen h{\"o}her als das zu erwartende Signal und muss durch einen Tiefpass unterdr{\"u}ckt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Gr{\"o}ßenordnungen des zu erwartenden Signals betragen kann und {\"a}hnlich langsam wie typische Signale abklingt. Die Unterdr{\"u}ckung dieser Pulsantwort stellte in den ersten Experimenten die gr{\"o}ßte H{\"u}rde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdr{\"u}ckung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf gr{\"o}ßere Agglomerate und Sedimente von MNPs beschr{\"a}nkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das prim{\"a}re Zielsystem f{\"u}r RDS hingegen, Eindom{\"a}nenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion f{\"u}r den Signalverlauf. Es erm{\"o}glicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindom{\"a}nenpartikel in w{\"a}ssriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu k{\"o}nnen ist eine Verk{\"u}rzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer pr{\"a}zise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals f{\"u}r verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere M{\"o}glichkeiten auf, die ohne aufw{\"a}ndigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverh{\"a}ltnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die ben{\"o}tigten Frequenzen vollst{\"a}ndig im Sperrband des Tiefpassfilters liegen k{\"o}nnen, l{\"a}sst sich damit die Pulsantwort bei hinreichend „weichem" Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollst{\"a}ndig vermeiden. Dar{\"u}ber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 \% der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung {\"a}ndert und diese {\"A}nderung nicht abrupt erfolgt, sondern das Rotationsfeld {\"u}bergangsweise in ein linear oszillierendes Feld {\"u}bergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollst{\"a}ndig neutralisiert, so dass damit das St{\"o}rsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht m{\"o}glich, Echosequenzen zu erzeugen, da hier bei der f{\"u}r Echosequenzen ben{\"o}tigten Richtungsumkehr des Rotationsfelds die zuvor aufgepr{\"a}gte Phasenverteilung durch das Offsetfeld zerst{\"o}rt wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich h{\"o}here Wiederholraten m{\"o}glich. Die Vermeidung von Schaltvorg{\"a}ngen durch die Verwendung von Offsetfeldern erm{\"o}glicht es, mit dem urspr{\"u}nglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich f{\"u}r unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindom{\"a}nenpartikel mit einer nicht vernachl{\"a}ssigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem f{\"u}r RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachl{\"a}ssigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle {\"u}brigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverl{\"a}ufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken m{\"o}glich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung f{\"u}r z.B. unterschiedliche Amplituden oder unterschiedliche Viskosit{\"a}ten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abh{\"a}ngigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennsch{\"a}rfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grunds{\"a}tzliche H{\"u}rden und M{\"o}glichkeiten f{\"u}r das ebenfalls in dieser Arbeit eingef{\"u}hrte RDS auf. Es zeigt damit grundlegende Aspekte auf, die f{\"u}r die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen n{\"o}tig sind. Mit RDS wird in weiterf{\"u}hrenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die r{\"a}umliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage f{\"u}r molekulare Bildgebung ist.}, subject = {Magnetteilchen}, language = {de} } @phdthesis{Voelckel2022, author = {Voelckel, Markus}, title = {Zeitaufgel{\"o}ste Spektroskopie von nanoskaligen Halbleitern und Pyrenderivaten}, doi = {10.25972/OPUS-27611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Um den jahrtausendealten Weg der Menschheit vom Papyrus {\"u}ber Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsf{\"a}higerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanor{\"o}hren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele M{\"o}glichkeiten f{\"u}r zuk{\"u}nftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bez{\"u}glich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen. Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanor{\"o}hren als chiralit{\"a}tsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgel{\"o}ste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch D{\"u}nnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden. In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zun{\"a}chst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanor{\"o}hre bewegen, sondern lokalisiert vorliegen. Die l{\"a}ngere trionischen Zerfallsdauer nach X\$_1\$- verglichen mit X\$_1^+\$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X\$_1\$ und X\$_1^+\$ wurde an SWNT-D{\"u}nnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerf{\"a}llt schneller mit zunehmender Ladungstr{\"a}gerdichte durch h{\"o}herer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungstr{\"a}gern, welche als nichtstrahlende L{\"o}schstellen fungieren. F{\"u}r das X\$_1^+\$-PB ist ein {\"a}hnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption {\"u}berlagert. Diese l{\"a}sst sich in einer starken S{\"a}ttigung der Dotierung wie auch einer hohen Bandkantenverschiebung begr{\"u}nden. In Kapitel 5 wurde die Gr{\"o}ße der Exzitonen und Trionen in dotierten SWNT-D{\"u}nnschichtfilmen mittels des Phasenraumf{\"u}llmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-{\"U}berlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Gr{\"o}ßen \$\xi_\mathrm{k}\$ zu erhalten. F{\"u}r die Trionengr{\"o}ße wurde zus{\"a}tzlich der {\"U}berlapp der Absorptionsbanden einbezogen, um korrigierte Werte \$\xi_{\mathrm{T,k}}\$ zu bestimmen. \$\xi_\mathrm{k}\$ betr{\"a}gt in der intrinsischen Form 6\$\pm\$2\,nm und bleibt bis zu einer Ladungstr{\"a}gerdichte \$n_{\mathrm{LT}}<0.10\$\,nm\$^{-1}\$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei \$n_{\mathrm{LT}}\approx0.20\$\,nm\$^{-1}\$ zu beobachten. F{\"u}r diesen Trend ist die {\"U}berlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verf{\"a}lscht wird. Die Abweichung der intrinsischen Gr{\"o}ße von den in der Literatur berichteten 13\$\pm\$3\,nm ist m{\"o}glicherweise auf Unterschiede in der Probenpr{\"a}paration zur{\"u}ckzuf{\"u}hren. F{\"u}r die Trionengr{\"o}ße ergibt sich bei steigender Dotierung ein {\"a}hnliches Verhalten: Sie betr{\"a}gt f{\"u}r \$n_{\mathrm{LT}}<0.20\$\,nm\$^{-1}\$ 1.83\$\pm\$0.47\,nm, was in der Gr{\"o}ßenordnung in guter {\"U}bereinstimmung mit der Literatur ist. F{\"u}r h{\"o}here Dotierungen sinkt \$\xi_{\mathrm{T,k}}\$ bis auf 0.92\$\pm\$0.26nm ab. Dies erkl{\"a}rt sich dadurch, dass bei h{\"o}herer \$n_{\mathrm{LT}}\$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbanden{\"u}berlagerung nicht mehr vollst{\"a}ndig durch den entsprechenden Korrekturfaktor kompensiert werden kann. Kapitel 6 besch{\"a}ftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorl{\"a}ufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle {\"A}hnlichkeit der Molek{\"u}le {\"a}ußert sich in gleichen Reduktionspotentialen wie auch {\"a}hnlichen potentialabh{\"a}ngigen Absorptionsspektren. W{\"a}hrend nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenz{\"a}hlen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarit{\"a}t der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes f{\"u}hrt hier zu {\"A}nderungen. Die durchschnittliche Fluoreszenzlebensdauer \$\tau_{\mathrm{av}}\$ sinkt außerdem mit Reduktion und Radikalbildung; f{\"u}r h{\"o}here Emissionswellenl{\"a}ngen ist \$\tau_{\mathrm{av}}\$ außerdem h{\"o}her. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Molek{\"u}le sowie die Sensibilit{\"a}t gegen{\"u}ber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollst{\"a}ndig belegt werden, wof{\"u}r EPR-Messugen notwendig w{\"a}ren.}, subject = {Dotierung}, language = {de} } @phdthesis{Kunkel2022, author = {Kunkel, Pascal Gerhard}, title = {Nahinfrarot-Ultrakurzzeitspektroskopie an einwandigen Kohlenstoffnanor{\"o}hren in dotierten D{\"u}nnfilmen und Polymermatrizen}, doi = {10.25972/OPUS-26900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nanor{\"o}hren, die auf dem Element Kohlenstoff basieren, besitzen ein großes Potential f{\"u}r ihre Anwendung als neuartige und nachhaltige Materialien im Bereich der Optoelektronik und weiteren zukunftsweisenden Technologiefeldern. Um jedoch hierf{\"u}r genutzt werden zu k{\"o}nnen, ist ein tiefgreifendes Kenntnis {\"u}ber ihre außergew{\"o}hnlichen photophysikalischen Eigenschaften notwendig. Kohlenstoffnanor{\"o}hren sind als eindimensionale Halbleiter sehr vielseitige Materialien. Jedoch ist der Zusammenhang zwischen ihrer Eignung als Halbleiter und der daf{\"u}r notwendigen Dotierung nur sehr unzureichend verstanden. Die Ziele der vorliegenden Dissertation waren deshalb, ein grundlegendes Verst{\"a}ndnis der photophysikalischen Energietransferprozesse in Nanor{\"o}hren zu erlangen und den Einfluss von gezielten Dotierungen auf diese Prozesse im Hinblick auf ihre Eigenschaften als eindimensionale Halbleiter detailliert zu untersuchen. Die Grundlage f{\"u}r die Experimente bildeten verschiedene Filme aus einwandigen (6,5)-Kohlenstoffnanor{\"o}hren, die durch ein Polyfluoren-Copolymer in einer organischen L{\"o}sungsmittelumgebung isoliert wurden. Mit Hilfe der Ultrakurzzeitspektroskopie wurden die auf einer schnellen (ps-ns) Zeitskala ablaufenden photophysikalischen Prozesse an diesen Filmen unter verschiedenen Bedingungen untersucht und analysiert. In Kapitel 4 wurde der generelle Energietransfer der Kohlenstoffnanor{\"o}hren in Polymermatrizen im Detail studiert. Hierbei wurden durch Simulationen theoretische dreidimensionale Verteilungen von Kohlenstoffnanor{\"o}hren erzeugt und die nach einem Energietransfer vorliegenden Polarisationsanisotropien berechnet. Verschiedene Berechnungsans{\"a}tze ergaben, dass die Nanorohrdichte ϱSWCNT f{\"u}r ein Massen{\"u}berschuss X der Matrix nahezu unabh{\"a}ngig von dem R{\"o}hrenvolumen war und durch ϱSWCNT = X-1 · 40 000 μm-1 angen{\"a}hert werden konnte. Die Simulationen lieferten von der R{\"o}hrendichte abh{\"a}ngige Gaußverteilungen der zwischen den Nanor{\"o}hren vorliegenden Abst{\"a}nden. Aus den Verteilungen konnte weiterhin der Anteil an R{\"o}hren bestimmt werden, die f{\"u}r einen Energietransfer zur Verf{\"u}gung stehen. Weitere Simulationen von Nanorohrverteilungen lieferten die Polarisationsanisotropie in Abh{\"a}ngigkeit von der Anzahl an durchgef{\"u}hrten Energietransferschritten. Die Ergebnisse aus den Simulationen wurden zur Interpretation der Ultrakurzzeitmessungen angewandt. Hierbei wurden durch die Variation der Polymermatrix die zwischen den Nanor{\"o}hren vorliegenden Abst{\"a}nde ver{\"a}ndert und damit die Art und Intensit{\"a}t des Energietransfers kontrolliert. In Messungen der transienten Anisotropie zeigte sich, dass ein Exziton nach seiner Erzeugung zwei depolarisierende Energietransferschritte durchf{\"u}hrte. Die Zerfallsdynamiken des Exzitons gaben auch klare Hinweise auf weitere nicht depolarisierende Energietransferprozesse, die durch parallel zueinander stehende {\"U}bergangsdipolmomente erm{\"o}glicht wurden. Eine Erkl{\"a}rung f{\"u}r dieses Verhalten lieferte die faserige Struktur der Filme, die sich in Aufnahmen durch das Elektronenmikroskop zeigte. Das Kapitel 5 besch{\"a}ftigte sich mit dem Aufbau eines transienten Nahinfrarotspektrometers und den n{\"o}tigen experimentellen Umbauten zur Messung der transienten Absorption f{\"u}r energiearme Signale im Spektralbereich unterhalb von 1.4 eV. Hierzu wurde die Weißlichterzeugung f{\"u}r die Verwendung von Calciumfluorid umgebaut. Das erzeugte Weißlicht wurde in das aufgebaute Prismenspektrometer eingekoppelt, um es weitestgehend linear auf einer Energieskala zu dispergieren. Auf diese Weise wurden energiearme Spektralkomponenten nicht auf unverh{\"a}ltnism{\"a}ßig viele Pixel verteilt und konnten mit ausreichender Intensit{\"a}t detektiert werden. Die Lichtdetektion erfolgte mittels zweier Detektorzeilen aus Indiumgalliumarsenid, die das transiente Signal durch eine direkte Referenzierung stabilisierten. Weiterhin wurde in diesem Kapitel die Justage und die programmierte Ansteuerung des Systems detailliert beschrieben. Hierbei wurde auf die Justage der Einkopplung per Freistrahl, die Kalibrierung mittels Bandpassspektren sowie auf die Aufnahme von Weißlichtspektren und transienten Karten detailliert eingegangen. An Nanorohrdispersionen durchgef{\"u}hrten Testmessungen zeigten, dass das transiente Nahinfrarotspektrometer mit direkter Signalreferenzierung einwandfrei funktionierte und daher den beobachtbaren Spektralbereich auf den Bereich von Energien bis unterhalb von 1 eV erweiterte. Damit erm{\"o}glichte der Aufbau einen Zugang zu der Beobachtung gr{\"o}ßerer Nanorohrchiralit{\"a}ten sowie zu der Untersuchung von energiearmen, spektralen Signaturen von Nanorohrdefekten. In Kapitel 6 wurde das transiente Nahinfrarotspektrometer genutzt, um das zeitabh{\"a}ngige Verhalten von redoxchemisch p-dotierten Nanor{\"o}hren zu charakterisieren und quantitativ zu beschreiben. Hierzu wurden die spektralen Eigenschaften von SWCNT-D{\"u}nnfilmen als Funktion eines steigenden Dotierungsgrades durch die Messungen der transienten und linearen Absorption studiert. In der linearen Absorption im Bereich von 0.9 - 2.5 eV vereinfachte sich das Spektrum mit ansteigender Dotierung stark und verlor vor allem im Bereich des ersten Subbandes deutlich an Oszillatorst{\"a}rke. Bei starker Dotierung verschwanden die Signalbeitr{\"a}ge von X1 und der Phononenseitenbande. Weiterhin bleichte auch die bei mittleren Dotierungsgraden auftauchende Trionenabsorption aus und ging in die breite Absorptionsbande der H-Bande {\"u}ber. Das Erscheinen und Verschwinden der trionischen sowie exzitonischen Absorption war ebenfalls in der transienten Absorption durch zeitgleich auftretende/verschwindende Photobleichsignale zu erkennen. Sowohl der Zerfall des exzitonischen PB-Signals wie auch des Trions beschleunigte sich mit einer steigenden Dotierung. Die Zerfallszeit des Exzitons im undotierten Film betrug 6.87 ps und verk{\"u}rzte sich auf 0.732 ps bei h{\"o}heren Dotierungsgraden. Die Zerfallszeit des Photobleichens des Trions reduzierte sich von 2.02 ps auf 0.440 ps. Auffallend war hierbei, dass das Trion im Vergleich zu dem Exziton exponentiell zerfiel und damit auf eine Lokalisierung dieses Zustandes hinweist. Bei h{\"o}heren Dotierungsmittelkonzentrationen tauchte in der transienten Absorption ein neuer Signalbeitrag auf. Die Existenz dieses Signals konnte auf die H-Bande zur{\"u}ckgef{\"u}hrt werden und k{\"o}nnte auf einer Verschiebung des linearen Absorptionsspektrums aufgrund einer Renormalisierung der Bandl{\"u}cke oder der S{\"a}ttigung von Ladungstr{\"a}gern beruhen. Das Signal zeigte eine klare Abh{\"a}ngigkeit vom Dotierungsgrad des Nanorohrfilmes. So wies es eine hypsochrome Verschiebung auf, wurde spektral breiter und seine Zerfallsdauer reduzierte sich von 1.62 ps auf 0.520 ps mit steigendem Dotierungsgrad.}, subject = {Einwandige Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{Graeb2021, author = {Gr{\"a}b, Patrick}, title = {Physikalisch-chemische Methoden und Experimente f{\"u}r Unterricht und Lehramtsstudium}, doi = {10.25972/OPUS-24763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die Lehre von physikalisch-chemischen Inhalten in der universit{\"a}ren Lehramtsausbildung und im gymnasialen Chemieunterricht ist herausfordernd. M{\"o}gliche Ursachen hierf{\"u}r sind das teils hohe Abstraktionsniveau und fehlende Messger{\"a}te. Im Rahmen dieser Arbeit wurden kosteng{\"u}nstige Messger{\"a}te entwickelt, mit denen Lernende in typische physikochemische Methoden und deren Anwendungen experimentell eingef{\"u}hrt werden k{\"o}nnen. Durch offen gestaltete und kontextbezogene Experimente zu Themenfeldern der Spektroskopie, Thermodynamik und Kinetik sollen Lernende einen ph{\"a}nomenologischen Zugang zur physikalischen Chemie finden. Durch eine entsprechende didaktische und experimentelle Aufarbeitung der Konzepte sollen insbesondere Sch{\"u}lerinnen und Sch{\"u}ler ohne gr{\"o}ßeres Vorwissen f{\"u}r physikalisch-chemische Inhalte im Sinne eines modernen und experimentell orientierten Chemieunterrichts begeistert werden.}, subject = {Hochschule}, language = {de} } @phdthesis{Suess2021, author = {S{\"u}ß, Jasmin}, title = {Theoretische Untersuchungen an molekularen Aggregaten: 2D-Spektroskopie und Exzitonendynamik}, doi = {10.25972/OPUS-24713}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Diese Dissertation besch{\"a}ftigt sich mit der Exzitonendynamik molekularer Aggregate, die nach Mehrphotonen-Anregung auf ultrakurzer Zeitskala stattfindet. Hierbei liegt der Fokus auf der Charakterisierung der Exziton-Exziton-Annihilierung (EEA) mithilfe von zweidimensionaler optischer Spektroskopie f{\"u}nfter Ordnung. Dazu werden zwei verschiedene Modellsysteme implementiert: Das elektronische Homodimer und das elektronische Homotrimer-Modell, wobei Letzteres eine Erweiterung des Dimer-Modells darstellt. Die Kopplung des quantenmechanischen Systems an die Umgebung wird mithilfe des Quantum-Jump-Ansatzes umgesetzt. Besonderes Interesse kommt der Analyse des Signals f{\"u}nfter Ordnung in Abh{\"a}ngigkeit der Populationszeit T zu. Anhand des Dimer-Modells als kleinstm{\"o}gliches Aggregat lassen sich bereits gute Vorhersagen auch {\"u}ber das Verhalten gr{\"o}ßerer molekularer Aggregate treffen. Der Zerfall des oszillierenden Signals f{\"u}r lange Populationszeiten korreliert mit der EEA. Dies zeigt, dass die zweidimensionale optische Spektroskopie genutzt werden kann, um den Annihilierungsprozess zu charakterisieren. Innerhalb des Modells des Dimers wird weiterhin der Einfluss der Intraband-Relaxation untersucht. Zunehmende Intraband-Relaxation verhindert den Austausch zwischen den lokalen Zust{\"a}nden, der essentiell f{\"u}r den Annihilierungsprozess ist, und die EEA wird blockiert. Das elektronische Trimer-Modell erweitert das Dimer-Modell um eine Monomereinheit. Somit befinden sich die Exzitonen im Anschluss an die Anregung nicht mehr unvermeidlich nebeneinander. Es gibt somit eine Konfiguration, bei der sich die Exzitonen zun{\"a}chst zueinander bewegen m{\"u}ssen, bevor die Startbedingung des Annihilierungsprozesses gegeben ist. Dieser zus{\"a}tzliche Schritt wird auch Exzitonendiffusion genannt. Die Ergebnisse dieser Arbeit legen nahe, dass das erwartete Verhalten nur zu sehr kurzen Zeiten im Femtosekundenbereich auftritt und somit die Zeitskala der Exzitonendiffusion im Falle des Trimers nicht sichtbar wird. Es bedarf demnach eines gr{\"o}ßeren Modellsystems, bei dem sich der Effekt der zeitverz{\"o}gert eintretenden EEA deutlich in der Zerfallsdynamik manifestieren kann.}, subject = {Molekulardynamik}, language = {de} } @phdthesis{Mueller2020, author = {M{\"u}ller, Kerstin}, title = {Einzelmolek{\"u}l- und Ensemble-Fluoreszenzstudien an funktionalisierten, halbleitenden Kohlenstoffnanor{\"o}hren}, doi = {10.25972/OPUS-20994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Ziel dieser Dissertation war es zu einem besseren Verst{\"a}ndnis hinsichtlich folgender Themen beizutragen und M{\"o}glichkeiten aufzuzeigen, mit welchen die Voraussetzungen f{\"u}r Anwendungen von einzelnen, funktionalisierten Kohlenstoffnanor{\"o}hren, wie u.a. Einzelphotonenquellen, erf{\"u}llt werden k{\"o}nnen. Eine wesentliche Voraussetzung f{\"u}r die Funktionalisierung von einzelnen Kohlenstoffnanor{\"o}hren ist zun{\"a}chst eine Probenpr{\"a}paration, welche SWNT-Suspensionen mit einem hohen Anteil an vereinzelten SWNTs hoher PL-Intensit{\"a}t bereitstellen kann. Um solche SWNT-Suspensionen herstellen zu k{\"o}nnen, wurden drei verschiedene Rohmaterialien und Dispergiermittel auf deren Entb{\"u}ndelungseffizienz- und relativer Photolumineszenzquantenausbeute untersucht. Anhand von photolumineszenzspektroskopischen Untersuchungen und Messungen der Extinktion stellte sich heraus, dass in Kombination des unaufbereiteten CVD-Kohlenstoffnanorohrrußes mit dem Copolymer PFO:BPy als Dispergiermittel und einem speziell in dieser Dissertation entwickelten Herstellungsverfahren f{\"u}r die Mikroskopieproben, stabile (6,5)-SWNT-Suspensionen mit einem großen Anteil an einzelnen SWNTs hoher PL-Intensit{\"a}t, hergestellt werden k{\"o}nnen. Letztere Suspension diente als Ausgangsmaterial f{\"u}r die, in dieser Dissertation neuartige, entwickelte Methodik zur Differenzierung zwischen einzelnen SWNTs und Aggregaten mittels PL- und Ramanmessungen an einem PL-Mikroskopie-Aufbau, welche eine weitere Voraussetzung f{\"u}r Einzelpartikelstudien darstellt. Hierbei wurden im Rahmen einer statistischen Messreihe PL- und Ramanspektren von 150 SWNT-Objekten aufgenommen und hieraus resultierend die Parameter FWHM, Energie des S1-Emissions-Zustands und relative Photolumineszenzquantenausbeute ermittelt. Schließlich konnten die zwischen einer einzelnen SWNT und einem Aggregat charakteristischen Differenzen anhand der Korrelationen zwischen den drei Parametern dargestellt werden. Zudem erfolgte eine statistische Analyse zur Bestimmung der statistischen Signifikanz dieser Korrelationen. Hierbei wurde anhand der nicht-parametrischen Spearman-Korrelationskoeffizienten und der p-Werte gezeigt, dass in Kombination dieser drei Messparameter mit einer hohen Wahrscheinlichkeit zwischen einer einzelnen SWNT und einem Aggregat differenziert werden kann. Demnach konnte eine neuartige, im Vergleich zur Literatur, praktikable Methodik zur Differenzierung zwischen einzelnen SWNTs und Aggregaten, etabliert werden, welche die Voraussetzung f{\"u}r Einzelrohrstudien ist. Der Fokus dieser Dissertation ist die Entschl{\"u}sselung der Reaktionsmechanismen der Arylierung und reduktiven Alkylierung von (6,5)-SWNTs im Ensemble und auf Einzelrohrbasis. Durch diese kovalenten Funktionalisierungsverfahren entstehen neue fluoreszierende Defekt-Zust{\"a}nde, deren zeitabh{\"a}ngiges Intensit{\"a}tsverhalten in der vorliegenden Arbeit n{\"a}her untersucht wurde. Hinsichtlich der Arylierung von SWNTs mit Diazoniumsalzen postulieren Studien einen zweistufigen Reaktionsmechanismus, welcher durch eine kombinatorische, spektroskopische Gesamtbetrachtung im Rahmen dieser Dissertation best{\"a}tigt werden konnte. Auch konnte erstmalig in der Literatur gezeigt werden, dass die Reaktion in hohem Maße reproduzierbar ist. Reproduzierbarkeitsstudien wurden auch im Falle der reduktiven Alkylierung unternommen, wobei erstmalig festgestellt wurde, dass diese Reaktion lediglich im hohen Maße reproduzierbar ist, sofern die Reduktionsl{\"o}sung mindestens 17 Stunden vor Reaktionsstart angesetzt wird. Basierend auf diesem Resultat, wurden reproduzierbare Messreihen zur Untersuchung der Reaktionsbedingungen und des Reaktionsmechanismus unternommen, da diesbez{\"u}glich unzureichend Kenntnis in der Literatur vorhanden ist. Zur Kl{\"a}rung des Reaktionsmechanismus, von welchem lediglich Annahmen existieren, wurde zum einen der Einfluss der Laseranregung auf die Reaktion untersucht. Da lediglich f{\"u}r den Falle des Ansetzens der Reduktionsl{\"o}sung unmittelbar vor Messbeginn, wobei die reaktiven SO2- -Radikale erzeugt werden, ein Einfluss der Laseranregung festgestellt werden konnte, nicht jedoch im weiteren Reaktionsverlauf, ist von keiner radikalischen Reaktion im Funktionalisierungsschritt auszugehen. Dies konnte durch den Einsatz von Konstitutionsisomeren des Iodbutans best{\"a}tigt werden, wobei das Iodbutanisomer, welches im Fall einer radikalischen Reaktion die h{\"o}chste Reaktivit{\"a}t zeigen sollte, zu keiner Funktionalisierung der SWNTs f{\"u}hrte. Im Gegensatz hierzu, konnte durch das 1-Iodbutan, mit dem prim{\"a}ren C-Atom, eine hohe PL-Intensit{\"a}t der defekt-induzierten Zust{\"a}nde E11- und T- verzeichnet werden, was die weitere Annahme einer SN2-Reaktion st{\"u}tzt. Im Rahmen dieser Dissertation konnte zudem erstmalig entdeckt werden, dass unter deren alkalischen, reduktiven Bedingungen, eine Funktionalisierung mit Acetonitril erfolgen kann, was durch die Durchstimmung der PL-Intensit{\"a}t des Defektzustands bei Variation des Volumenanteils von Acetonitril best{\"a}tigt werden konnte. Hierbei gilt es jedoch weiter zu analysieren, auf welche Art die Koordination bzw. Funktionalisierung von Acetonitril an den SWNTs erfolgt, was u.a. durch Ramanmessungen untersucht werden k{\"o}nnte. Auch konnten neuartige Kenntnisse bez{\"u}glich der Reaktionskinetik basierend auf den Studien dieser Dissertation erhalten werden, wobei festgestellt wurde, dass das Reaktionsprofil mit dem einer komplexen Folgereaktion angen{\"a}hert werden kann. Zudem konnten neuartige Kenntnisse aus der Thermodynamik, wie die Ermittlung der Aktivierungsenergie der Adsorption von DOC-Molek{\"u}len auf der SWNT-Oberfl{\"a}che, durch die Zugabe des Tensids DOC zum Reaktionsansatz und dem hieraus resultierenden Reaktionsabbruch, erhalten werden. Schließlich fand eine {\"U}bertragung der Ergebnisse aus den Ensemblestudien der reduktiven Alkylierung auf Einzelpartikeluntersuchungen statt, wobei letztere erstmalig im Rahmen dieser Arbeit durchgef{\"u}hrt wurden. Aus der statistischen Analyse, welche von Martina Wederhake durchgef{\"u}hrt wurde, resultierte durch Erh{\"o}hung des Stoffmengenverh{\"a}ltnisses von 1-Iodbutan zu Kohlenstoff eine inhomogene Steigerung des Funktionalisierungsgrades. Ausblickend gilt es nun zu pr{\"u}fen, ob die zeitlichen Reaktionsverl{\"a}ufe der photolumineszierenden Zust{\"a}nde, welche aus den Ensemble-Studien erhalten wurden, auf Einzelrohrbasis reproduziert werden k{\"o}nnen. Es l{\"a}sst sich demnach festhalten, dass mithilfe der Studien dieser Dissertation ein Probenherstellungsverfahren, welches stabile SWNT-Suspensionen mit einem großen Anteil an einzelnen Kohlenstoffnanor{\"o}hren, hoher PL-Intensit{\"a}t erm{\"o}glicht, etabliert werden konnte. Zudem wurde eine neuartige, praktikable und statistisch signifikante Methodik zur Differenzierung zwischen einzelnen Kohlenstoffnanor{\"o}hren und Aggregaten entwickelt. Schließlich konnten neue, essentielle Informationen bez{\"u}glich des Reaktionsmechanismus und den Reaktionsbedingungen der Arylierung und reduktiven Alkylierung von halbleitenden (6,5)-SWNTs erhalten werden. Wie in der Einleitung bereits erw{\"a}hnt, sind sowohl der Erhalt einer stabilen SWNT-Suspension mit einem großen Anteil an einzelnen Nanor{\"o}hren hoher PL-Intensit{\"a}t, die M{\"o}glichkeit der Identifizierung einzelner SWNTs, als auch ein ausgiebiges Verst{\"a}ndnis der Reaktionsmechanismen der Funktionalisierungsreaktionen, essentielle Voraussetzungen f{\"u}r die Verwirklichung von Einzelphotonenquellen auf Basis einzelner, funktionalisierter Kohlenstoffnanor{\"o}hren. Diese k{\"o}nnen aufgrund derer geeigneter Emissionseigenschaften als vielversprechende Kandidaten f{\"u}r das Ausgangsmaterial von Einzelphotonenquellen in der Quanteninformationstechnologie angesehen werden.}, subject = {Einwandige Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{Klaas2019, author = {Klaas, Martin}, title = {Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten}, doi = {10.25972/OPUS-17689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176897}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Eine technologisch besonders vielversprechende Art von Mikrokavit{\"a}ten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Gr{\"o}ße seiner Wellenl{\"a}nge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgr{\"o}ße einzufangen entstand die M{\"o}glichkeit neue Ph{\"a}nomene der Licht-Materie Wechselwirkung zu studieren. Der Oberfl{\"a}chenemitter (VCSEL), welcher sich das ver{\"a}nderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits l{\"a}nger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20\% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavit{\"a}ten in der technologischen Gesellschaft der n{\"a}chsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavit{\"a}ten solcher Qualit{\"a}t herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabh{\"a}ngigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von koh{\"a}rentem Licht {\"u}ber den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes {\"a}hneln denen eines VCSELs, allerdings bei einigen Gr{\"o}ßenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue M{\"o}glichkeiten f{\"u}r besonders energiesparende Anwendungen in der Photonik er{\"o}ffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festk{\"o}rperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasen{\"u}bergang des Systems {\"u}ber seine Koh{\"a}renz- und Spineigenschaften. Es folgt eine knappe {\"u}berblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential erm{\"o}glicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als ver{\"a}ndertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird {\"u}ber Verschiebung der Emissionslinie zu h{\"o}heren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erl{\"a}utert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilit{\"a}t in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabh{\"a}ngigkeit der Ladungstr{\"a}ger von der Dichte des Ladungstr{\"a}gerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verst{\"a}ndnis der Hysterese ein elektrisches Rauschen {\"u}ber den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erkl{\"a}rt. Die Hysterese erm{\"o}glicht außerdem den Nachweis eines optischen Schalteffekts {\"u}ber eine zus{\"a}tzliche Ladungstr{\"a}gerinjektion mit einem Laser weit {\"u}ber der Bandkante des Systems, um den positiven R{\"u}ckkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen k{\"o}nnen durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit {\"u}ber ihren Exzitonanteil stark wechselwirken zu k{\"o}nnen. Die M{\"o}glichkeit durch Lithographie solche eindimensionalen Kan{\"a}le zu definieren, wurde bereits in verschiedenen Prototypen f{\"u}r Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ans{\"a}tze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen {\"u}ber die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert {\"u}ber halbge{\"a}tzte Spiegel und zum anderen {\"u}ber eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher ph{\"a}nomenologische {\"A}hnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung erm{\"o}glicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abh{\"a}ngigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms erm{\"o}glicht wird. Die Mikroscheibe funktioniert {\"a}hnlich einer Resonanztunneldiode. Sie erm{\"o}glicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zust{\"a}nde in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Struktur{\"u}berg{\"a}ngen koppeln k{\"o}nnen. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Koh{\"a}renzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Koh{\"a}renzeigenschaften der Emission von Polariton-Kondensaten ist seit l{\"a}ngerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erh{\"o}hte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen koh{\"a}rentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Koh{\"a}renzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzun{\"a}hern. Dies geschieht {\"u}ber den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrot{\"u}rmchen mit verschiedenen Durchmessern. In Koh{\"a}renzmessungen wird der Einfluss dieser Ver{\"a}nderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch {\"u}ber den ver{\"a}nderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erkl{\"a}rt. Durch die st{\"a}rkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrot{\"u}rmchen wird die Streuwahrscheinlichkeit erh{\"o}ht, was eine effizientere Relaxation in den Grundzustand erm{\"o}glicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund f{\"u}r die erh{\"o}hte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, w{\"a}hrend ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der f{\"u}r einen Laser am {\"U}bergang zwischen thermischer und koh{\"a}renter Lichtquelle vorhergesagt wird, kann durch eine {\"U}berlagerung der beiden Zust{\"a}nde beschrieben werden. {\"U}ber eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasen{\"u}bergang des Kondensats mit Hilfe dem Anteil der koh{\"a}renten Partikel im System verfolgt werden. Dadurch, dass der gemessene {\"U}bergang dem Paradigma der thermisch-koh{\"a}renten Zust{\"a}nde folgt, wurde nachgewiesen, dass bei r{\"o}tlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Koh{\"a}renz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungstr{\"a}ger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasen{\"u}bergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf h{\"o}heren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollst{\"a}ndige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als {\"U}berlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizit{\"a}t wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erkl{\"a}rt werden {\"u}ber das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abh{\"a}ngen. Weiterhin werden elliptische Mikrot{\"u}rmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des T{\"u}rmchens ausrichtet. In asymmetrischen Mikrot{\"u}rmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die l{\"a}ngere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrot{\"u}rmchendurchmesser und gr{\"o}ßerer Ellipzit{\"a}t zu. Dies geschieht durch erh{\"o}hten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverh{\"a}ltnis von 3:2 kann ein nahezu vollst{\"a}ndig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen k{\"o}nnen.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Hochrein2018, author = {Hochrein, Thomas}, title = {Terahertz-Spektroskopie: Systementwicklung und Einsatz in der Polymeranalytik}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-090-0 (Print)}, doi = {10.25972/WUP-978-3-95826-091-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163473}, school = {W{\"u}rzburg University Press}, pages = {xi, 194}, year = {2018}, abstract = {Die zeitaufgel{\"o}ste Terahertz-Spektroskopie erzielte in den letzten 20 Jahren erhebliche Entwicklungsfortschritte. Aber auch davor haben bereits Untersuchungen der dielektrischen Eigenschaften in diesem Spektralbereich mit herk{\"o}mmlichen Spektrometern unter anderen Termini stattgefunden. Viele Anwendungsfelder der Terahertz-Zeitbereichsspektroskopie sind noch unzureichend erforscht, weshalb in dieser Arbeit der Einsatz in der Polymeranalytik und prim{\"a}r an Polyamiden n{\"a}her untersucht wird. Außerdem weist die Terahertz-Systemtechnik f{\"u}r koh{\"a}rente Messungen noch erhebliche Verbesserungspotenziale auf. Im Rahmen dieser Arbeit wurde daher das neue Verfahren Optical Sampling by Laser Cavity Tuning (OSCAT) entwickelt. Es erm{\"o}glicht auf elegante Weise eine variable Zeitverz{\"o}gerung von Pulsfolgen, wie sie in Terahertz-Zeitbereichsspektrometern erforderlich ist. Dabei wird die M{\"o}glichkeit ver{\"a}nderbarer Repetitionsrate bei Ultrakurzpulslasern genutzt. Die Vorteile des OSCAT-Verfahrens, wie z. B. Skalierbarkeit, Robustheit, großer Messbereich und Messgeschwindigkeit, sowie die Funktion werden in dieser Arbeit sowohl theoretisch als auch experimentell vorgestellt und diskutiert. Erste Terahertz-Messungen an polymeren Schmelzen demonstrieren potenzielle Anwendungsgebiete f{\"u}r Terahertz-Spektrometer. Der Rezepturanteil und Zerst{\"o}rungsgrad eingebrachter F{\"u}llstoffe kann sehr gut {\"u}ber den Brechungsindex bestimmt werden. Die Ergebnisse zeigen außerdem ein stark temperaturabh{\"a}ngiges Verhalten polarer und unpolarer Polymere. Neben der Auswirkung der temperaturinduzierten Dichte{\"a}nderung auf den Brechungsindex konnte insbesondere bei Polyamiden ein starker Anstieg der Absorption mit zunehmender Temperatur nachgewiesen werden. Deshalb wurden die Absolutwerte des Brechungsindex und Absorptionskoeffizienten im niederfrequenten Terahertz-Spektralbereich tiefergehend untersucht. Es zeigte sich, dass der Brechungsindex polarer Polymere aus einem polaren und unpolaren Anteil besteht. Der unpolare Anteil wird prim{\"a}r durch die Material- bzw. Amidgruppendichte bestimmt. Der polare Anteil wird durch das inter- und intramolekulare Schwingungsverhalten bzw. dessen resultierenden Absorptionsbanden beeinflusst. Diese Schwingungsmoden wurden daher mittels breitbandiger Spektroskopie in abgeschw{\"a}chter Totalreflexion (ATR) an unterschiedlichen Polyamiden aufgenommen. Simulationsrechnungen mit Lorentz-Oszillatoren zeigen, wie bedeutsam eine kritische Diskussion absoluter Absorptionswerte aus solchen ATR-Messungen ist. Die ermittelten Ursachen sind {\"A}nderungen des Brechungsindex der Probe infolge von Temperatur{\"a}nderung sowie Dispersion durch Schwingungsmoden - auch weit abseits des Bandenmaximums. Die gemessenen Schwingungsmoden wurden anhand quantenmechanischer ab-inito Berechnungen der Molek{\"u}lketten und -cluster analysiert und mit Literaturangaben abgeglichen. Verschiedene Schwingungen konnten hierbei im Terahertz-Spektralbereich bei unterschiedlichen {\alpha}- und {\gamma}-Polyamiden ausgemacht werden. Sie erweisen sich als sehr komplex und erstrecken sich meist {\"u}ber die gesamte Molek{\"u}lkette. Schwingungen einzelner Atome oder Gruppen sind meist mit umfangreichen Ausgleichsbewegungen des Molek{\"u}lr{\"u}ckgrats gekoppelt. Insbesondere phononenartige Schwingungen konnten hierbei im Vergleich zu bisherigen Publikationen sehr pr{\"a}zise beschrieben werden.}, subject = {FIR-Spektroskopie}, language = {de} } @phdthesis{Wehner2018, author = {Wehner, Johannes}, title = {Wellenfunktionsbasierte Analyse zweidimensionaler Spektren: Wellenpaketbewegung in Dimeren und Quantendiffusionsdynamik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163555}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der st{\"o}rungstheoretischen Berechnung von zweidimensionalen Photonen-Echo-Spektren f{\"u}r das elektronische und vibronische Modell eines Homo- und Hetero-Dimers sowie f{\"u}r ein vibronisches Modell eines Monomers unter dem Einfluss einer System-Bad-Wechselwirkung. Bei der Analyse der Dimerspektren steht neben der Orientierungsmittelung der Polarisation dritter Ordnung der Unterschied zwischen elektronischen und vibronischen Spektren sowie der Vergleich der Spektren von Homo- und Hetero-Dimeren im Zentrum des Interesses. Bei der Analyse der Monomer-Spektren steht die Behandlung einer dissipativen Dynamik bzw. des vibrational-coolings innerhalb eines stochastischen Ansatzes im Vordergrund. Der erste Teil dieser Arbeit konzentriert sich auf die st{\"o}rungstheoretische Berechnung der Polarisation dritter Ordnung in Dimeren. Dabei werden alle Aspekte und Ergebnisse f{\"u}r verschiedene Geometrien der {\"U}bergangsdipolmomente analysiert und diskutiert. Die Berechnungen ber{\"u}cksichtigen dabei auch die zuf{\"a}llige Anordnung der Molek{\"u}le in der Probe. Die Zusammenh{\"a}nge zwischen den 2D-Spektren und den Eigenschaften der Monomereinheiten, die Abh{\"a}ngigkeit der Intensit{\"a}ten mancher Peaks von der zeitlichen Abfolge der Pulse sowie der Einfluss der elektronischen Kopplung und verschiedener {\"U}bergangsdipolmomente erm{\"o}glichen ein grundlegendes Verst{\"a}ndnis der elektronischen Photonen-Echo-Spektren. Im elektronischen Dimer wird der Hetero-Dimer-Charakter durch verschiedene Monomeranregungsenergien sowie unterschiedliche {\"U}bergangsdipolmomente der Monomereinheiten bestimmt. Der Einfluss dieser Gr{\"o}ßen auf die Photonen-Echo-Spektren kann durch die Kombination einer detaillierten analytischen Betrachtung und numerischen Rechnungen anschaulich nachvollzogen werden. In der vibronischen Betrachtungsweise zeigt sich, dass die Spektren deutlich an Komplexit{\"a}t gewinnen. Durch die Vibrationsfreiheitsgrade vervielfachen sich die m{\"o}glichen {\"U}berg{\"a}nge im System und damit die m{\"o}glichen Peakpositionen im Spektrum. Jeder Peak spaltet in eine Vibrationssubstruktur auf, die je nach ihrer energetischen Position mit anderen {\"u}berlagern kann. Der Vergleich zwischen Homo- und Hetero-Dimer-Spektren wird durch die Wahl verschiedener Vibrationsfrequenzen und unterschiedlicher Gleichgewichtsabst{\"a}nde entlang der Vibrationskoordinaten erweitert. Die Berechnung des Orientierungsmittels erfolgt mit zwei verschiedenen Ans{\"a}tzen. Zum einen wird das Mittel durch den numerischen sampling-Ansatz berechnet. Dabei werden Azimutal- und Polarwinkel in kleinen Winkelinkrementen abgetastet und f{\"u}r jede Kombination ein 2D-Spektrum berechnet. Die Einzelspektren werden anschließend gemittelt. Diese Methode erweist sich im Dimer als sehr effektiv. Zum anderen erlaubt die analytische Auswertung der Polarisation dritter Ordnung, das gemittelte Spektrum direkt in einer einzelnen Rechnung durch winkelgemittelte Gewichtungsfaktoren zu bestimmen. Bei der Berechnung der elektronischen 2D-Spektren ist diese Methode sehr leistungsf{\"a}hig, da alle Ausdr{\"u}cke analytisch bekannt sind. F{\"u}r vibronische Systeme ist dieser Ansatz ebenfalls sehr leistungsstark, ben{\"o}tigt aber eine einmalige aufwendige Analyse vor der Berechnung. Trotz der deutlich erh{\"o}hten Anzahl an Zustandsvektoren, die propagiert werden m{\"u}ssen, ist diese Methode circa zweimal schneller als die direkte Mittelung mit der sampling-Methode. Im zweiten Teil konzentriert sich die Arbeit auf die Beschreibung eines Monomers, das sich in einer dissipativen Umgebung befindet. Dabei wird auf die L{\"o}sung einer stochastischen Schr{\"o}dingergleichung zur{\"u}ckgegriffen. Speziell wird die sogenannte quantum-state-diffusion-Methode benutzt. Dabei werden nicht nur die Erwartungswerte f{\"u}r die Energie und den Ort, sondern auch die Polarisation dritter Ordnung - eine phasensensitive Gr{\"o}ße - bestimmt. In der theoretischen Fragestellung wird dabei, ausgehend von der von-Neumann Gleichung, die Zeitentwicklung der reduzierten Dichtematrix durch die Integration einer stochastischen zeitabh{\"a}ngigen Schr{\"o}dingergleichung reproduziert. In Rechnungen koppelt die Stochastik {\"u}ber die Erwartungswerte von Ort und Impuls die verschiedenen st{\"o}rungstheoretischen Korrekturen der Wellenfunktion miteinander. Die Spektren, die aus den numerischen Simulationen erhalten werden, spiegeln das dissipative Verhalten des Systems detailliert wider. Eine Analyse der Erwartungswerte von Ort und Energie zeigt, dass sich die einzelnen elektronischen Zust{\"a}nde wie ged{\"a}mpfte harmonische Oszillatoren verhalten und jeweils einen exponentiellen Zerfall abh{\"a}ngig von der Dissipationskonstante zeigen. Dieser Teil der Arbeit erweitert vorausgehende Untersuchungen, bei denen ein vereinfachter Ansatz zu Einsatz kam, der die korrelierte Stochastik nicht ber{\"u}cksichtigte.}, subject = {Molekulardynamik}, language = {de} } @phdthesis{Kess2016, author = {Keß, Martin}, title = {Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Diese Arbeit befasst sich mit zeitaufgel{\"o}sten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zun{\"a}chst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zust{\"a}nden. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zust{\"a}nde beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zur{\"u}ckzuf{\"u}hren. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs l{\"a}sst sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabh{\"a}ngige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausf{\"u}hrlich charakterisiert. Damit dieser Prozess auftreten kann m{\"u}ssen mehrere Bedingungen erf{\"u}llt werden: Das Wellenpaket muss {\"u}ber die Dauer der Oszillationen ann{\"a}hernd {\"o}rtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verh{\"a}ltnis der Kopplung zum Energieabstand der Zust{\"a}nde. Deshalb muss an den station{\"a}ren Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen h{\"a}ngt außerdem von dem Populationsverh{\"a}ltnis und den Phasen der Komponenten des Wellenpakets in den beiden Zust{\"a}nden ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-N{\"a}herung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben koh{\"a}renter Propagation k{\"o}nnen Spr{\"u}nge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die St{\"a}rke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust koh{\"a}renter Phasen ohne Energie{\"a}nderung. Fallenzust{\"a}nde wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zust{\"a}nde charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erkl{\"a}rt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzust{\"a}nde besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzust{\"a}nde, da nur die Eigenfunktionen der Fallenzust{\"a}nde große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter f{\"u}hren zu {\"A}nderungen der relativen Peakintensit{\"a}ten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden st{\"o}rungstheoretisch {\"u}ber die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterf{\"o}rmigen Anordnung, die sich auf {\"U}berg{\"a}nge unter Mitwirkung der Fallenzust{\"a}nde zur{\"u}ckf{\"u}hren lassen. H{\"o}here System-Bad-Kopplungen f{\"u}hren aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzust{\"a}nden korrespondieren, bleichen schneller aus. H{\"o}here Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. L{\"a}ngere Zeiten f{\"u}hren zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entv{\"o}lkerung der h{\"o}her liegenden Zust{\"a}nde l{\"a}sst sich somit zeit- und energieaufgel{\"o}st betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen l{\"a}sst, obwohl die Zuordnung der Peaks im 2D-Spektrum zu {\"U}berg{\"a}ngen zwischen definierten Eigenzust{\"a}nden nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell k{\"o}nnen auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu {\"u}berpr{\"u}fen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abh{\"a}ngig von der St{\"a}rke der elektronischen Kopplung, eine sehr gute bis gute {\"U}bereinstimmung, was die Annahme eines schnellen ICs st{\"u}tzt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabh{\"a}ngige Schr{\"o}dingergleichung f{\"u}r ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gel{\"o}st und die Polarisation nicht-st{\"o}rungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zust{\"a}nde und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabh{\"a}ngig, ein Winkel zwischen den {\"U}bergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensit{\"a}t der Peaks im rein elektronischen Trimer wurde analytisch erl{\"a}utert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgepr{\"a}gte vibronische Struktur. Es wurde gezeigt, wie die Spektren f{\"u}r h{\"o}here Aggregationsgrade durch die h{\"o}here Dichte an vibronischen Zust{\"a}nden komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine st{\"a}rkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer f{\"u}hrt zu Spektren mit {\"u}berlappenden Peaks und einer zus{\"a}tzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abh{\"a}ngigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden m{\"o}gliche Ans{\"a}tze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen.}, subject = {Quantenmechanik}, language = {de} }