@phdthesis{Niederdraenk2009, author = {Niederdraenk, Franziska}, title = {Ensemble-Modellierung von R{\"o}ntgenbeugungsdaten zur Strukturbestimmung von Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Ziel dieser Arbeit war es, die geometrische Struktur von Nanopartikeln mittels Pulver-R{\"o}ntgenbeugung und einem neuen Analyse-Verfahren, der Ensemble-Modellierung (EM), zu ermitteln. Die genaue Aufkl{\"a}rung der kristallinen Struktur ist ein Schl{\"u}ssel f{\"u}r die Entwicklung exakter theoretischer Modelle und damit f{\"u}r ein besseres Verst{\"a}ndnis der Nanoteilchen und deren Eigenschaften. Dabei fußt die Methode auf einem atomaren Modell und berechnet daraus das Beugungsbild der Teilchen. Neben der Auswertung verschiedener Proben sollte ebenso das Potential der Methode {\"u}berpr{\"u}ft werden - auch im Vergleich zu Standardmethoden wie der Rietveld-Verfeinerung oder einer Einzellinien-Anpassung. Im Gegensatz zur EM beinhalten letztere kein explizites Nanoteilchenmodell. Insgesamt kamen drei typische Nanopartikel-Systeme zum Einsatz: Zun{\"a}chst wurden f{\"u}nf ZnO-Proben untersucht, die aufgrund ihrer verschiedenen Liganden deutlich unterschiedliche Partikelgr{\"o}ßen zeigten. Die pr{\"a}sentierten CdS-Nanoteilchen bildeten dagegen mit unter 100 Atomen bereits den {\"U}bergang zur Clusterphysik. Das letzte Kapitel stellte schließlich drei Proben mit deutlich komplexeren Core-Shell-Partikeln vor, welche aus einem CdSe-Kern und einer ZnS-Schale bestehen. Dabei konnten mit Hilfe der EM f{\"u}r alle Systeme sehr viel detailliertere Aussagen gemacht werden, als mit den Standardmethoden. Anhand der ersten vorgestellten ZnO-Probe wurde gezeigt, wie man sich bei der Auswertung mit der EM schrittweise dem besten Modell n{\"a}hert, indem man, startend mit der Partikelform, anschließend weitere komplexe Merkmale implementiert. In dem ZnO-Kapitel wurde ersichtlich, dass die Liganden eine große Rolle spielen - nicht nur f{\"u}r die Gr{\"o}ße der Nanopartikel, sondern auch f{\"u}r deren Qualit{\"a}t. Weiterhin wurde festgestellt, dass der Ligand TG beinahe defektfreie Nanoteilchen liefert, w{\"a}hrend die Stabilisatoren DACH und DMPDA den Einbau von Stapelfehlern beg{\"u}nstigen. In den jeweiligen Vergleichen mit der Rietveld- und Einzellinien-Anpassung fiel auf, dass diese Methoden f{\"u}r kleine Nanoteilchen Resultate liefern, die als deutlich weniger vertrauensw{\"u}rdig einzustufen sind als jene, die mit der EM erhalten wurden. Der Grund sind die f{\"u}r kleine Teilchen nicht vernachl{\"a}ssigbaren Faktoren wie eine (anisotrope) Form, Oberfl{\"a}cheneffekte, Parameter-Verteilungen etc., welche nur mit der EM ber{\"u}cksichtigt werden k{\"o}nnen. Noch ungenauer f{\"a}llt die Analyse per Absorptionsspektroskopie plus theoretischen Methoden aus. Die einzige CdS-Probe wies mit ca. 1.3 nm Durchmesser besonders kleine Nanoteilchen auf. Das zugeh{\"o}rige Beugungsbild zeigte daher nur noch sehr wenige Strukturen, was bereits die Bestimmung der Kristallstruktur erschwerte. Bei nur noch einigen gestapelten Schichten verloren auch die Stapelfehler ihre urspr{\"u}ngliche Bedeutung. Die maßgebliche Frage bestand somit darin, ob man bei Kristalliten mit unter 100 Atomen noch von einer "normalen" Kristallstruktur sprechen kann, oder ob hier bereits andere Strukturformen vorliegen, z.B. {\"a}hnlich den C60-Molek{\"u}len. Da die EM solche Hohl-Strukturen ebenfalls simulieren kann, w{\"a}re der n{\"a}chste Schritt, diese f{\"u}r sehr kleine Partikel im Vergleich zu den {\"u}blichen Kristallstrukturen zu testen. Bei den drei betrachteten Core-Shell-Proben zeigte die EM abermals ihre große St{\"a}rke, indem sie es erm{\"o}glichte, die deutlich komplexeren Teilchen realistisch zu simulieren. So war es m{\"o}glich, die experimentellen R{\"o}ntgenbeugungs-Daten hervorragend wiederzugeben, was mit keiner der Standardmethoden gelang. Hierf{\"u}r war es n{\"o}tig, neben dem CdSe-Kern eine zus{\"a}tzliche ZnS-Schalenstruktur einzuf{\"u}hren. Zwar konnte bei den Proben mit der EM alleine nicht eindeutig festgestellt werden, welcher ZnS-Schalentypus vorliegt, es wurden jedoch diverse Anhaltspunkte gefunden, die f{\"u}r ein lokal-epitaktisches Wachstum auf dem CdSe-Kern sprechen. F{\"u}r die Methode der EM selbst l{\"a}sst sich in der Retrospektive folgendes fest halten: Sie ist den Standard-Techniken wie der Rietveld-Verfeinerung f{\"u}r sehr kleine Nanopartikel deutlich {\"u}berlegen. Der Grund daf{\"u}r sind die vielf{\"a}ltig modellierbaren Strukturen, welche Defekte, Oberfl{\"a}cheneffekte, Parameterverteilungen etc. beinhalten k{\"o}nnen. Ein weiterer großer Pluspunkt der EM gegen{\"u}ber anderen Methoden besteht in der M{\"o}glichkeit, die immer popul{\"a}rer werdenden Core-Shell-Partikel mit vielf{\"a}ltigen Schalenarten zu simulieren, wobei hier auch noch weitere komplexere Optionen f{\"u}r Schalen, z.B. zweierlei Schalen (Core-Shell-Shell-Teilchen), vorstellbar sind. Die Tatsache, dass all diese Merkmale zudem intrinsisch in dem berechneten Beugungsbild enthalten sind, ist von besonderem Gewicht, da dies bedeutet, keine k{\"u}nstlichen Parameter einf{\"u}hren und diese interpretieren zu m{\"u}ssen. Solange eine gewisse Atomanzahl pro Partikel nicht {\"u}berschritten wird, und v.a. bei defektbehafteten Nanoteilchen, stellt die EM somit die erste Wahl dar.}, subject = {Nanopartikel}, language = {de} } @phdthesis{Griebel2003, author = {Griebel, Dragan}, title = {Fluoreszente, hybride Nanosensoren auf Silicatbasis f{\"u}r die Bioanalytik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6153}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Es wurde ein Leitpartikeltyp mit hoher Fluoreszenz sowie einem Absorptionsbereich oberhalb von 600 nm evaluiert. Zur Anbindung der hochspezifisch wirkenden Antik{\"o}rper wurde die Teilchenoberfl{\"a}che mit Carboxylgruppen funktionalisiert. Die Darstellung dieser sph{\"a}rischen, komplex aufgebauten erfolgte {\"u}ber eine nasschemische Synthese. Die synthetisierten Partikel besitzen eine hohe Fluoreszenzintensit{\"a}t, gutes Chromatographierverhalten und spezifische Beladbarkeit mit monoklonalen Antik{\"o}rpern (z.B. Troponin T) auf einer mit Carboxylgruppen modifizierten Partikeloberfl{\"a}che. Auf die Partikel mit dem favorisierten Fluorophor musste eine zus{\"a}tzliche Silicath{\"u}lle aufkondensiert werden, damit diese im Anschluss erfolgreich mit Antik{\"o}rpern beladen werden konnte. Die erhaltenen partikul{\"a}ren Systeme wurden sowohl qualitativ als auch quantitativ charakterisiert. Die Fluoreszenzintensit{\"a}t dieser dotierten Kern-Schale-Partikel konnte soweit optimiert werden, dass sich klinisch relevante und noch h{\"o}here Sensitivit{\"a}ten in Pr{\"u}fteststreifen detektieren ließen. Weiterhin wurden neuartige Fluoralkylsilan und Fluorophor codotierte Silicat-Nanopartikel synthetisiert, die auf Anhieb eine gute untere Nachweisgrenze von Troponin erzielten. Durch UV-VIS- und Fluoreszenz-Untersuchungen sowie Konjugations- und Pr{\"u}fteststreifen-Versuche konnte gezeigt werden, dass die Cokondensation des Fluoralkylsilans in einer Erh{\"o}hung von Absorption und Fluoreszenz der Partikel resultiert. Weitere Untersuchungen von zeigten, dass eine zus{\"a}tzliche Oberfl{\"a}chenmodifizierung mit Fluoralkylsilan zu einer signifikanten Verschlechterung der Konjugationseigenschaften mit Antik{\"o}rpern f{\"u}hrt. Alternative Detekorreagenzien und -methoden wurden ebenfalls untersucht. So konnte der kationische Komplex Tris-(1,10-phenantrolin)ruthenium(II)-dichlorid erfolgreich in monodisperse Silicat-Partikel eingebaut werden. Aufgrund ihrer geringen Sauerstoffpermeabilit{\"a}t sind sie als impermeabler Referenzstandard in O2-Sensoren geeignet. Eine andere untersuchte Detektionsmethode basiert auf zeitaufgel{\"o}ster Fluoreszenz (TRF). Hierbei werden haupts{\"a}chlich Lanthanoid-Komplexe eingesetzt. Am besten untersucht sind Europium-Komplexe, welche meistens Diketone als Liganden besitzen. Bislang konnten diese neutralen Komplexe jedoch nicht in polare Silicatpartikel-Matrizes eingebaut werden. Durch Einsatz von 3,3,3-Trifluoropropyltrimethoxysilan gelang es erstmalig, einen Europium(III)-tris-4,4,4-trifluoro-1-(2-naphthoyl)-1,3-butandion-Komplex (Eu(TNB)3) in hydrophobierte Silicat-Nanopartikeln physikalisch einzubauen. TRF-Messungen zeigten Abklingzeiten von ca. 300 µs. In diesem bislang nicht verf{\"u}gbaren Partikel-Typ konnten positive Eigenschaften von Latex- und Silicatpartikeln kombiniert werden. Auch einige Porphyrinkomplexe mit langen Fluoreszenzlebensdauern sind in Silicat-Nanopartikel eingebaut worden. Der neutrale Komplex 5,10,15,20-Tetrakis(4-carboxyphenyl)-porphyrin-Pd(II) konnte nur durch vorhergehende Silanisierung erfolgreich eingebunden werden. Die erhaltenen sph{\"a}rischen Partikel weisen eine Gr{\"o}ßenverteilung von 200-300 nm auf. Ein weiteres, kationisches Porphyrin (5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21,23H-porphyrin-Zn(II)) konnte ebenfalls erfolgreich in etwa 140 nm große Silicat-Nanopartikel blutungsstabil eingebaut werden.}, subject = {Silicate}, language = {de} } @phdthesis{Bloemer2011, author = {Bl{\"o}mer, Steffen}, title = {Synthese von modifizierten Eisenoxid-Nanopartikeln f{\"u}r die MR-Tomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In der vorliegenden Arbeit wurden magnetische Kolloide auf der Basis von Eisenoxid-Nanopartikeln hergestellt, die eine erh{\"o}hte Verweildauer im Blutstrom aufweisen sollten. Die H{\"u}llmolek{\"u}le bestehen aus zwei Teilen: Direkt an den Phosphor gebunden eine hydrophobe Alkylkette aus vier bis zehn CH2-Einheiten, und daran anschließend eine Methoxy-terminierte Polyethylenglykol (PEG)-Kette. Die PEG-Kette sollte sowohl die Hydrophilie der fertigen Partikel als auch den n{\"o}tigen Schutz gegen Phagozytose gew{\"a}hrleisten. Diese speziellen Phosphons{\"a}uren wurden dann dazu verwendet, Magnetit-Nanopartikel stabil einzuh{\"u}llen.}, subject = {Eisenoxide}, language = {de} } @phdthesis{Eber2004, author = {Eber, Marcus}, title = {Wirksamkeit und Leistungsf{\"a}higkeit von nanoskaligen Fließregulierungsmitteln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9026}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Zusammenfassend stellen sich die hydrophoben Nanomaterialien als die optimalen Fließregulierungsmittel dar (Ausnahme: Printex® G). Die Agglomerate des hochpotenten hydrophoben Ruß-Derivats Printex® 95 liegen von Herstellerseite bereits in gen{\"u}gend zerkleinerter Form vor, so daß keine weitere Zerkleinerung w{\"a}hrend des Mischvorganges erforderlich ist. Infolgedessen adsorbiert es mit h{\"o}chster Geschwindigkeit an die Oberfl{\"a}che der Sch{\"u}ttgutpartikel und {\"u}bernimmt dort die Funktion von Oberfl{\"a}chenrauhigkeiten. In der Folge der werden die interpartikul{\"a}ren Haftkr{\"a}fte sehr schnell minimiert. Im Gegensatz zu den hydrophilen Nanomaterialien zeigt Printex® 95 keinen ausgepr{\"a}gten Wiederanstieg der Zugspannungen selbst nach sehr langen Mischzeiten von 4320 Minuten. Durch die Verwendung des hydrophoben Ruß-Derivates Printex® 95 werden Pulvermischungen erhalten, die zudem weitestgehend unempfindlich sind gegen{\"u}ber Kapillarkr{\"a}ften bei erh{\"o}hten Umgebungsfeuchten. Das hydrophobe Printex® 95 vereint damit praktisch alle gew{\"u}nschten Eigenschaften eines optimalen Fließregulierungsmittels und es kann als Modellsubstanz f{\"u}r die Entwicklung noch potenterer Nanomaterialien dienen. Bisher stand das nicht abschließend beurteilte cancerogene Potential dieses Stoffes einer breiten Anwendung entgegen.}, subject = {Nanostrukturiertes Material}, language = {de} }