@phdthesis{Bialas2017, author = {Bialas, David}, title = {Exciton Coupling in Homo- and Heterostacks of Merocyanine and Perylene Bisimide Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152418}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present thesis it could be demonstrated that strong exciton coupling does not only occur between same type of chromophores but also between chromophores with different excited state energies. The coupling significantly influences the optical absorption properties of the heterostacks comprising merocyanine and perylene bisimide dyes, respectively, and is an indication for coherent energy transfer between the chromophores. In addition, bis(merocyanine)-C60 conjugates have been synthesized, which self-assemble in non-polar solvents resulting in well-defined supramolecular p/n-heterojunctions in solution. These model systems enabled femtosecond transient absorption studies on the photoinduced electron transfer process, which is a key step for the formation of charge carriers in organic solar cells.}, subject = {Exziton}, language = {de} } @phdthesis{Kess2016, author = {Keß, Martin}, title = {Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Diese Arbeit befasst sich mit zeitaufgel{\"o}sten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zun{\"a}chst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zust{\"a}nden. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zust{\"a}nde beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zur{\"u}ckzuf{\"u}hren. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs l{\"a}sst sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabh{\"a}ngige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausf{\"u}hrlich charakterisiert. Damit dieser Prozess auftreten kann m{\"u}ssen mehrere Bedingungen erf{\"u}llt werden: Das Wellenpaket muss {\"u}ber die Dauer der Oszillationen ann{\"a}hernd {\"o}rtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verh{\"a}ltnis der Kopplung zum Energieabstand der Zust{\"a}nde. Deshalb muss an den station{\"a}ren Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen h{\"a}ngt außerdem von dem Populationsverh{\"a}ltnis und den Phasen der Komponenten des Wellenpakets in den beiden Zust{\"a}nden ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-N{\"a}herung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben koh{\"a}renter Propagation k{\"o}nnen Spr{\"u}nge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die St{\"a}rke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust koh{\"a}renter Phasen ohne Energie{\"a}nderung. Fallenzust{\"a}nde wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zust{\"a}nde charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erkl{\"a}rt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzust{\"a}nde besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzust{\"a}nde, da nur die Eigenfunktionen der Fallenzust{\"a}nde große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter f{\"u}hren zu {\"A}nderungen der relativen Peakintensit{\"a}ten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden st{\"o}rungstheoretisch {\"u}ber die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterf{\"o}rmigen Anordnung, die sich auf {\"U}berg{\"a}nge unter Mitwirkung der Fallenzust{\"a}nde zur{\"u}ckf{\"u}hren lassen. H{\"o}here System-Bad-Kopplungen f{\"u}hren aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzust{\"a}nden korrespondieren, bleichen schneller aus. H{\"o}here Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. L{\"a}ngere Zeiten f{\"u}hren zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entv{\"o}lkerung der h{\"o}her liegenden Zust{\"a}nde l{\"a}sst sich somit zeit- und energieaufgel{\"o}st betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen l{\"a}sst, obwohl die Zuordnung der Peaks im 2D-Spektrum zu {\"U}berg{\"a}ngen zwischen definierten Eigenzust{\"a}nden nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell k{\"o}nnen auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu {\"u}berpr{\"u}fen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abh{\"a}ngig von der St{\"a}rke der elektronischen Kopplung, eine sehr gute bis gute {\"U}bereinstimmung, was die Annahme eines schnellen ICs st{\"u}tzt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabh{\"a}ngige Schr{\"o}dingergleichung f{\"u}r ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gel{\"o}st und die Polarisation nicht-st{\"o}rungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zust{\"a}nde und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabh{\"a}ngig, ein Winkel zwischen den {\"U}bergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensit{\"a}t der Peaks im rein elektronischen Trimer wurde analytisch erl{\"a}utert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgepr{\"a}gte vibronische Struktur. Es wurde gezeigt, wie die Spektren f{\"u}r h{\"o}here Aggregationsgrade durch die h{\"o}here Dichte an vibronischen Zust{\"a}nden komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine st{\"a}rkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer f{\"u}hrt zu Spektren mit {\"u}berlappenden Peaks und einer zus{\"a}tzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abh{\"a}ngigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden m{\"o}gliche Ans{\"a}tze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen.}, subject = {Quantenmechanik}, language = {de} } @phdthesis{Liang2011, author = {Liang, Yuejiang}, title = {Deagglomerierung und Oberfl{\"a}chenfunktionalisierung von Nanodiamant mittels thermochemischer und mechanochemischer Methoden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56296}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Nanodiamant weist aufgrund seiner herausragenden mechanischen, optischen und biokompatiblen Eigenschaften ein enormes Potential auf. F{\"u}r eine erfolgreiche Anwendung muss dieser jedoch zun{\"a}chst desagglomerisiert und an seiner Oberfl{\"a}che funktionalisiert werden. In dieser Arbeit werden zwei unterschiedlichen Methoden zur Deagglomerierung und Oberfl{\"a}chenfunktionalisierung vorgestellt. Im ersten Teil wird die thermochemische Methode beschrieben, um den ungew{\"o}hnlich stark agglomerierten Detonationsnanodiamant zu deagglomerieren. Dabei wird die Strategie verfolgt, den Nanodiamant erst durch eine thermische Behandlung im Vakuum die vorhandenen Oberfl{\"a}chengruppe zu entfernen, π-Bindungen zu etablieren und dann dessen Oberfl{\"a}che durch kovalente Bindungen zu modifizieren. Im zweiten Teil wird eine mechanochemische Methode f{\"u}r die Deagglomerierung und Oberfl{\"a}chenfunktionalisierung vorgestellt. Dabei wird ein v{\"o}llig neuer Ansatz (BASD-Verfahren) entwickelt. Die Ultraschallbehandlung in Kombination mit zus{\"a}tzlichen Mikrokeramikpartikeln eignet sich hervorragend, um Nanodiamant-agglomerate aufzubrechen. Zwei unterschiedliche Reaktionen mit zwei unterschiedlichen Nanodiamantsorten werden getestet: Eine einfache Kondensationsreaktion durch Silanisierung und eine Radikalreaktion {\"u}ber das Diazoniumsalz. In weiteren Experimenten kann gezeigt werden, dass sich die zuerst vorgestellte thermochemische Methode auch eignet, um aus fluoreszierenden NV-Nanodiamant kolloidalen NV-Nanodiamant mit funktionellen Gruppen herzustellen. Der letzte Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Herstellung von Nanodiamanten aus Diamantfilmen mit Hilfe des Top-down Ansatzes, da der gezielte und kontrollierte Aufbau der Gitterstruktur des Diamanten sowie die kontrollierte Einf{\"u}hrung bisher nur durch CVD oder Ionenimplantationstechnik m{\"o}glich ist.}, subject = {Nanopartikel}, language = {de} }