@phdthesis{Erk2018, author = {Erk, Christine}, title = {Metabolismus und Reaktivit{\"a}tsstudien neuer Arzneistoffe mittels LC-MS/MS-Methoden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung des Metabolismus sowie der Reaktivit{\"a}t verschiedener Wirk- und Arzneistoffe mittels fl{\"u}ssigchromatographischer und massen-spektrometrischer Methoden, sie gliedert sich dabei in vier Projekte. Zur Bestimmung des Metabolitenprofils wurde ein passendes In-vitro-Inkubationssystem mit Cytochrom-P-450-Systemen entwickelt. So wurden der Metabolismus und die Pharmakokinetik der Mip-Inhibitoren SF110, SF235 und SF354 gegen Legionellen, sowie neuer antitrypanosomaler Verbindungen MB209, MB343 und MB444 und von Daptomycin bestimmt. Dar{\"u}ber hinaus wurde die antibakterielle Aktivit{\"a}t des Daptomycins gegen{\"u}ber einem unbekannten Staphylokokkus-Stammes S. sciuri ermittelt. Außerdem wurden Reaktivit{\"a}tsuntersuchungen neu synthetisierter Inhibitoren gegen Tuberkulose und S. aureus durchgef{\"u}hrt. Die untersuchten Mip-Inhibitoren lieferten ein Metabolitenprofil, welches durch Ester- und Amidhydrolysen sowie Hydroxylierungen gepr{\"a}gt wurde. Die Verbindung SF110 schien dabei bereits eine gewisse Instabilit{\"a}t der Esterbindung aufzuweisen, da auch im Blindwert entsprechende Spaltprodukte identifiziert werden konnten. Die Hauptmetabolite von SF235 und SF354 bildeten sich durch unterschiedliche Hydrolysen, da die Spaltung des Molek{\"u}ls von den jeweiligen Substituenten abh{\"a}ngig ist. Innerhalb dieser Substanzklasse dominiert die mikrosomale Enzymkatalyse, da der gr{\"o}ßte metabolische Umsatz sowie die meisten Metabolite mittels mikrosomaler Fraktion des Menschen bzw. der Maus gefunden wurden. Die Klasse der Mip-Inhibitoren wird somit vor allem durch Cytochrom-P-450-Enzyme umgesetzt, wobei die Hydrophilie durch Einf{\"u}hrung polarer OH-Gruppen der Molek{\"u}le erh{\"o}ht wird. Die Hydroxylierung scheint dabei positionsspezifisch, bedingt durch sterische Hinderungen oder dirigierende Einfl{\"u}sse, abzulaufen. Stabilit{\"a}tsvergleiche zwischen SF110, SF235 und SF354 zeigten, dass die Einf{\"u}hrung einer Amidbindung anstelle der korrespondierenden Esterbindung die Substanzklasse maßgeblich metabolisch stabilisiert. Im Rahmen des murinen In-vivo-Metabolismus wurde beobachtet, dass SF235 einem deutlich st{\"a}rkeren Metabolismus unterlag als SF354 und sich der Metabolismus vor allem innerhalb der ersten 30 min vollzog. Demgegen{\"u}ber zeigten die In-vitro-Ergebnisse gegenteilige Ergebnisse, bei denen SF354 die am st{\"a}rksten metabolisierte Substanz war. Diese widerspr{\"u}chlichen Ergebnisse deuten darauf hin, dass In-vitro-Modelle nur als Anhaltspunkt verwendet werden sollten, um m{\"o}gliche Trends abzuleiten. Metabolismusstudien der Chinolonamide, die gegen die afrikanische Schlafkrankheit wirken sollen, veranschaulichten, dass die gr{\"o}ßte enzymatische Umsetzung aller drei getesteten Verbindungen mittels cytosolischer Fraktion erfolgte. Die Enzymreaktionen werden vermutlich durch ALDH bzw. MAO dominiert und nicht durch CYP bzw. FMO. Die gebildeten Metabolite in den verschiedenen Fraktionen unterlagen (ω-1)-Oxidationen, N-Desalkylierungen, Amidhydrolysen und aromatischen Hydroxylierungen. Auffallend war, dass eine Hydroxylierung am aromatischen Benzylring nur erfolgen konnte, sofern der Benzylaromat keinen Fluorsubstitutenten trug, da dieser desaktivierend wirkte. Die aromatische Hydroxylierung am Chinolonamid erfolgte dagegen bei allen drei Substanzen. Es wurde somit lediglich eine Hydroxylierung am Benzylring von MB343 festgestellt. Die enzymatische Aktivit{\"a}t aller Substanzen folgte einer Reaktionskinetik 1. Ordnung. Die unterschiedlichen Stabilit{\"a}ten der Substanzen zeigten einen deutlichen Trend: MB209 wurde, da es die instabilste Verbindung darstellt, im gr{\"o}ßten Maße umgesetzt, gefolgt von den stabileren Derivaten MB343 und MB444. Die Untersuchung der enzymatischen Aktivit{\"a}ten zeigte, dass die drei Substanzen, verglichen mit der Leitstruktur GHQ168, eine um den Faktor zehn geringere Aktivit{\"a}t aufwiesen [19]. Aufgrund der eingef{\"u}hrten Fluoratome weisen die Substanzen somit eine wesentlich h{\"o}here Stabilit{\"a}t auf. Diese Ergebnisse wurden durch die Untersuchung der Halbwertszeit best{\"a}tigt, bei der MB444 den h{\"o}chsten Wert besaß. Weiterhin ist die Position des Fluorsubstituenten am Chinolonger{\"u}st ausschlaggebend f{\"u}r die metabolische Stabilit{\"a}t, wobei MB444 aufgrund des para-Fluorsubstituenten am Chinolonamid die stabilste Verbindung darstellt. Durch Inkubation von Daptomycin mit unterschiedlichen S. sciuri-Isolaten wurde ein m{\"o}glicher Inaktivierungsmechanismus beobachtet, bei dem das Antibiotikum durch Spaltung des cyclischen Aminos{\"a}ureringes, durch Deacylierung des Fetts{\"a}ureschwanzes, einer Kombination beider Mechanismen oder durch eine Spaltung des heteroaromatischen Ringsystems von Tryptophan inaktiviert wurde. Die Proteasen des Daptomycin-resistenten S. sciuri-Isolats TS92 f{\"u}hrten zu einem Daptomycinabbau von 35 \%, unabh{\"a}ngig von der eingesetzten Menge des Arzneistoffes. Das Ausmaß des Abbaus scheint dar{\"u}ber hinaus vom eingesetzten Inkubationsmedium abh{\"a}ngig zu sein, da die Proteasen voraussichtlich auf ein bestimmtes N{\"a}hrmedium angewiesen sind. Der sensitive S. sciuri-Stamm TS93 lieferte die h{\"o}chste Abbaurate an Daptomycin mit 55 \% und widerlegt damit die Vermutung, dass Daptomycin die geringste antibakterielle Aktivit{\"a}t gegen{\"u}ber diesem S. sciuri-Stamm aufweist. Im In-vitro-Metabolismus zeigte Daptomycin insgesamt eine sehr geringe Umsetzungsmenge mit maximal 5 \% nach 4 h und einer geringen Metabolitenbildung. Hier wurde nur ein Metabolit gefunden, welcher auch mittels S. sciuri-Inkubation identifiziert wurde. Dieser Mechanismus k{\"o}nnte somit auf anderem Wege verlaufen. Die Reaktivit{\"a}tsstudien der kovalenten Inhibitoren der FadA5-Thiolase gegen Tuberkulose zeigten, dass nur die Verbindungen C1 und C4 eine Reaktivit{\"a}t gegen{\"u}ber der Aminos{\"a}ure Cystein93 im aktiven Zentrum besaßen, die somit f{\"u}r den gew{\"u}nschten Einsatzzweck geeignet sein k{\"o}nnten. Weiterhin wurde bei den kovalenten Inhibitoren der Enoyl-ACP-Reduktase mit dem Enzym FabI, welches im aktiven Zentrum ein Tyrosin besitzt, keine Reaktion festgestellt, da keine Addukte identifiziert wurden. Dies ist vermutlich auf die Unl{\"o}slichkeit im verwendeten TRIS-Puffer zur{\"u}ckzuf{\"u}hren.}, subject = {Biotransformation}, language = {de} } @phdthesis{Voelker2013, author = {V{\"o}lker, Michael}, title = {Entwicklung, Charakterisierung und Anwendung neuer In-vitro-Methoden zur Untersuchung des Fremdstoffmetabolismus und der Inhibition fremdstoffmetabolisierender Enzyme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99434}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Arzneistoffe werden nach ihrer Applikation durch verschiedene fremdstoff-metabolisierende Enzyme des Organismus biochemisch ver{\"a}ndert. Durch eine Hemmung dieser Enzyme, z. B. durch Grapefruitsaft oder einen gleichzeitig eingenommenen Arzneistoff, kann es insbesondere bei Arzneistoffen mit geringer therapeutischer Breite, wie z. B. Theophyllin oder Phenprocoumon, zu gef{\"a}hrlichen Nebenwirkungen kommen. Besonders gef{\"a}hrdet sind multimorbide Patienten, die eine Therapie mit einer Vielzahl von Arzneimitteln erhalten. Um den Metabolismus von neuen Wirkstoffen und deren Interaktionspotential zu untersuchen, werden u. a. In-vitro-Experimente mit Zellfraktionen oder einzelnen Enzymen durchgef{\"u}hrt. Bei Inhibitionsassays wird der Einfluss von Arzneistoffen auf die Umsetzung eines Testsubstrates untersucht. Ein Großteil dieser Arbeit besch{\"a}ftigt sich daher mit der Entwicklung von Methoden, mit denen die Inhibition wichtiger fremd-stoffmetabolisierender Enzyme, wie Cytochrom-P450-Enzyme (CYP-Enzyme), Glutathion-S-Transferasen (GSTs) und Carboxylesterasen (CES), untersucht werden kann. Dabei wurde auch eine Charakterisierung der Testsubstrate vorgenommen. Dar{\"u}ber hinaus wurden die Bioaktivierung von Clopidogrel und die Bildung von reaktiven Metaboliten untersucht. Aufgrund aktueller Diskussionen {\"u}ber die Interaktion zwischen Clopidogrel und Omeprazol wurde in dieser Arbeit die Bioaktivierung von Clopidogrel mit Hilfe von LC/MS/MS-Analysen und rekombinanten CYP-Enzymen sowie humanen Lebermikrosomen untersucht. Aufgrund der Instabilit{\"a}t des aktiven Metaboliten wurde in den inkubierten Proben eine Derivatisierung mit Dimedon durchgef{\"u}hrt. Die Untersuchungen zeigten, dass die Umwandlung zum 2-Oxo-Clopidogrel durch mehrere CYP-Enzyme erfolgt. Neben CYP2C19 sind CYP1A2, CYP2B6, CYP2C9 und CYP3A4 beteiligt. Anhand von selektiven Inhibitoren konnte CYP3A4 f{\"u}r die Bildung des aktiven Metaboliten aus 2-Oxo-Clopidogrel identifiziert werden. Neben der Biotransformation durch CYP-Enzyme wird haupts{\"a}chlich der Carbons{\"a}ureester des Clopidogrels hydrolysiert. Untersuchungen mit humanen Subzellfraktionen und rekombinanten Carboxylesterasen zeigen, dass die Esterhydrolyse durch CES1 katalysiert wird. Des Weiteren wurde der Metabolismus von Omeprazol untersucht. Es stellte sich heraus, dass die 5-Hydroxylierung und die 5-O-Demethylierung haupts{\"a}chlich durch CYP2C19 und CYP2D6 erfolgen. Dabei besitzt Omeprazol die h{\"o}chste Affinit{\"a}t zu CYP2C19. Die Bildung von Omeprazolsulfon wird hingegen nur durch CYP3A4 katalysiert. Mit Hilfe etablierter CYP-Inhibitionsassays wurde der Einfluss von Clopidogrel und Omeprazol auf neun verschiedene CYP-Enzyme untersucht. Durch Clopidogrel wurden CYP2B6 (IC50 = 6 nM), CYP2C19 (IC50 = 0.4 µM) und CYP1A2 (IC50 = 2.8 µM) gehemmt. Omeprazol inhibiert v. a. CYP2C19 (IC50 = 2 µM) und CYP3A4 (IC50 = 17 µM). Im Folgenden wurde auch der Einfluss von Omeprazol auf die Bildung von 2-Oxo-Clopidogrel untersucht. Die Bioaktivierung wurde allerdings erst bei einer Omeprazol-Konzentration von mehr als 10 µM beeinflusst. Am st{\"a}rksten wurde dabei CYP2C19 (IC50 ca. 100 µM) gehemmt. Aufgrund der recht schwachen Inhibition von CYP2C19 durch Omeprazol und der Tatsache, dass mehrere CYP-Enzyme die Bildung von 2-Oxo-Clopidogrel katalysieren, l{\"a}sst sich der Wirkungsverlust von Clopidogrel bei einer gleichzeitigen Einnahme von Omeprazol anhand der Ergebnisse der In-vitro-Versuche nicht durch eine Hemmung von CYP2C19 erkl{\"a}ren. Eine bisher nur wenig bei In-vitro-Interaktionsstudien untersuchte Klasse fremdstoffmetabolisierender Enzyme sind die Carboxylesterasen (CES), die v. a. bei der Bioaktivierung von Esterprodrugs eine wichtige Rolle spielen. F{\"u}r die Entwicklung von Inhibitionsassays wurden zun{\"a}chst verschiedene Modellsubstrate ausgew{\"a}hlt. Nach Inkubation dieser Substrate mit humanen Subzellfraktionen und rekombinanten Carboxylesterase-Enzymen wurden die Metaboliten mit Hilfe einer HPLC/UV-Analyse quantifiziert. Es zeigte sich, dass Methyl-4-nitrobenzoat und Mycophenolatmofetil selektiv durch CES1 hydrolysiert werden. Die Hydrolyse von Phenylacetat, p-Nitrophenylacetat und 4-Methylumbelliferylacetat wurde durch alle verwendeten Enzyme katalysiert. Dar{\"u}ber hinaus konnte eine Hydrolyse der aus Boswellia-Arten (Weihrauch) stammenden 3-O-Acetyl-11-keto--boswellias{\"a}ure durch CES2 beobachtet werden. Aufgrund der bei den meisten Modellsubstraten auftretenden Instabilit{\"a}t im Inkubationspuffer war eine Korrektur mit Hilfe von Blindproben erforderlich. Die Hydrolyse konnte durch Erniedrigung des pH-Wertes des Inkubationspuffers von 7.4 auf 6.5 und durch die Zugabe von Essigs{\"a}ure zur Stoppl{\"o}sung verlangsamt werden. Anschließend wurde die Beeinflussung der Hydrolyse von p-Nitrophenylacetat durch Pflanzenextrakte untersucht. Es zeigte sich, dass zahlreiche Extrakte die Esterasen aus der humanen Leber hemmten und die Aktivit{\"a}t bei einer Extraktkonzentration von 25-50 µg/ml weit unterhalb von 50 \% lag. Die Inhibition von CES durch Pflanzenextrakte stellt daher ein bisher unbekanntes Risiko f{\"u}r Arzneimittelinteraktionen dar. Cytochrom-P450-Enzyme (CYP-Enzyme) sind die wichtigste Gruppe fremdstoff-metabolisierender Enzyme. Zur Untersuchung der Beeinflussung dieser Enzyme durch neue Wirkstoffe werden daher standardm{\"a}ßig In-vitro-Interaktionsstudien durchgef{\"u}hrt. Von der Food and Drug Administration (FDA) wurden daher f{\"u}r jedes CYP-Enzym verschiedene Arzneistoffe als Testsubstrate vorgeschlagen. Zus{\"a}tzlich kommen bei solchen Untersuchungen Modellsubstrate zum Einsatz, deren Metaboliten fluoreszieren und die somit f{\"u}r ein Hochdurchsatz-Screening mit Hilfe von Mikrotiterplatten verwendet werden k{\"o}nnen. In dieser Arbeit wurde eine Reihe von Modellsubstanzen (Cumarin- und Harman-Derivate) auf ihre Eignung als Substrate f{\"u}r CYP-Inhibitionsassays untersucht. Nach der Entwicklung von Methoden zur Detektion der Metaboliten, die durch LC/MS/MS-Analysen oder durch HPLC/Fluoreszenzanalysen erfolgte, wurden die CYP-Enzyme identifiziert, die an der Umsetzung der Substrate beteiligt sind und mit Hilfe von CYP-Enzymen und humanen Lebermikrosomen wurden die Km-Werte der Substrate bestimmt. Die Untersuchungen zur Stabilit{\"a}t der CYP-Enzyme {\"u}ber 60 min zeigten, dass diese bei 37 °C stark an Aktivit{\"a}t verlieren, insbesondere CYP1A2. F{\"u}r eine maximale Umsetzungsgeschwindigkeit war eine NADPH-Konzentration von 1 mM ausreichend. Die Untersuchung von 14 Standardsubstraten ergab, dass die Mehrheit selektiv durch das entsprechende CYP-Enzym umgesetzt wird. Die Amodiaquin-N-deethylierung, die Tolbutamidhydroxylierung, die Chlorzoxazon-6-hydroxylierung und die 4-Nitrophenol-2-hydroxylierung wurden durch mehrere CYP-Enzyme katalysiert. Als Positivkontrollen f{\"u}r die Inhibitionsassays und zur Identifizierung der am Metabolismus beteiligten CYP-Enzyme werden von der FDA verschiedene Inhibitoren vorgeschlagen. Da nicht zu allen Inhibitoren Daten {\"u}ber deren Isoenzymselektivit{\"a}t vorliegen, wurde mit Hilfe der Assays die inhibitorische Aktivit{\"a}t von zw{\"o}lf Inhibitoren auf neun verschiedene CYP-Enzyme untersucht. Alle Inhibitoren hemmten das jeweilige angegebene CYP-Enzym. Bei Furafyllin (CYP1A2), Tranylcypromin (CYP2A6), Clopidogrel (CYP2B6), Montelukast (CYP2C8), Sulfaphenazol (CYP2C9), Chinidin (CYP2D6) und Ketoconazol (CYP3A4) konnte eine Konzentration ermittelt werden, bei der nur ein CYP-Enzym gehemmt wird. F{\"u}r Quercetin, Nootkaton, Diethyldithiocarbamat, Sertralin und Ticlopidin wurde eine Inhibition mehrerer CYP-Enzyme festgestellt. Mit Hilfe der CYP-Inhibitionsassays wurden Extrakte lebertoxischer Arzneipflanzen, wie z. B. Tussilago farfara (Huflattich) oder Chelidonium majus (Sch{\"o}llkraut), untersucht. Alle Extrakte hemmten konzentrationsabh{\"a}ngig die CYP-Enzyme, am st{\"a}rksten die Enzyme der Subfamilie CYP2C. Als In-vitro-Substrate f{\"u}r CYP-Inhibitionsassays werden aufgrund ihrer starken Fluoreszenz h{\"a}ufig Cumarin-Derivate eingesetzt. In dieser Arbeit wurden daher 18 O-alkylierte bzw. O-benzylierte Derivate von 7-Hydroxycumarin, 7-Hydroxy-4-methylcumarin und 7-Hydroxy-4-trifluormethylcumarin synthetisiert und die Umsetzung durch verschiedene CYP-Enzyme mit Hilfe der zuvor optimierten LC/LC/Fluoreszenz-basierten Assays untersucht. An der O-Desalkylierung der Cumarin-Derivate waren haupts{\"a}chlich CYP1A2, CYP2B6 und im geringeren Ausmaß CYP2C19, CYP2D6 und CYP2E1 beteiligt. Die h{\"o}chste Affinit{\"a}t besaßen die Substrate zu CYP1A2. Debenzylierungen wurden neben CYP1A2 haupts{\"a}chlich durch CYP3A4 katalysiert. Die h{\"o}chsten Umsetzungsgeschwindigkeiten wurden f{\"u}r die Debenzylierung von 7-Benzyloxy-4-methylcumarin (BMC, 14 pmol/pmol P450/min) und 7-Benzyloxy-4-trifluormethylcumarin (BFC, 9 pmol/pmol P450/min) beobachtet. F{\"u}r 7-Methoxy-4-trifluormethylcumarin (MFC) war die Umsetzungs¬geschwindigkeit f{\"u}r die O-Demethylierung mit CYP1A2 und CYP2B6 im Vergleich zu CYP2C9 deutlich h{\"o}her. MFC und 7-Ethoxy-4-trifluormethylcumarin (EFC) eignen sich daher v. a. f{\"u}r Inhibitionsuntersuchungen von CYP2B6. Bei den untersuchten 7 Alkyloxycumarinen handelt es sich in allen F{\"a}llen nicht um selektive CYP-Substrate. Sie k{\"o}nnen demnach nicht f{\"u}r Inhibitionsuntersuchungen mit humanen Lebermikrosomen verwendet werden. Ein Einsatz f{\"u}r Simultanbestimmungen der Hemmung mehrerer CYP-Enzyme in einem Versuch (Cocktail-Assay) ist aus diesem Grund ebenfalls nicht m{\"o}glich. Durch LC/MS-Analysen nach Inkubation der Cumarin-Derivate mit humanen Lebermikrosomen zeigte sich, dass neben den entsprechenden O Desalkylmetaboliten mehrere Hydroxymetaboliten entstehen und der O Desalkylmetabolit insbesondere bei Derivaten mit l{\"a}ngeren Alkylsubstituenten nicht der Hauptmetabolit ist. Ein Ziel der Arbeitsgruppe ist es zudem, neue In-vitro-Substrate zur Untersuchung der Inhibition von CYP-Enzymen mit besseren enzymkinetischen und analytischen Eigenschaften zu entwickeln. Grundstruktur hierf{\"u}r ist das -Carbolin, da -Carbolin-Derivate eine starke Fluoreszenz aufweisen. Von dem Naturstoff Harmin ist bekannt, dass dieser durch CYP1A2, CYP2C9, CYP2C19 und CYP2D6 O-demethyliert wird. Durch Modifizierung der Harman-Struktur sollte die CYP-Isoenzymselektivit{\"a}t f{\"u}r die O-Dealkylierung gesteigert werden und Substrate f{\"u}r weitere CYP-Enzyme erhalten werden. Hierf{\"u}r wurden in der Arbeitsgruppe u. a. 2-Benzyl-7-benzyloxyharman (BBH), 2-Benzyl-7-methoxyharman (BMH), 7-Methoxy-9-(4-carboxybenzyl)harman (MCBH) und 2-Methyl-7-methoxyharman (MMH) hergestellt. In dieser Arbeit wurden LC/LC/Fluoreszenz- und LC/MS/MS-Methoden zur Quantifizierung der aus diesen Derivaten entstehenden O-Desalkylmetaboliten entwickelt und die Substrate charakterisiert. Die Einf{\"u}hrung von Benzylsubstituenten an der phenolischen Hydroxylgruppe von Harmol (BBH) f{\"u}hrte zum Metabolismus durch CYP3A4 und die Substitution mit einem Carboxybenzylrest am Indolstickstoff (MCBH) verst{\"a}rkte die Selektivit{\"a}t zu den Enzymen der Subfamilie 2C. Durch die Methylierung des Pyridin-Stickstoffs des Harmins (MMH) wurde ein selektives Substrat f{\"u}r CYP2D6 erhalten, weshalb bei dieser Substanz auch humane Lebermikrosomen verwendet werden k{\"o}nnen. Durch die im Vergleich zu anderen CYP2D6-Substraten erhaltene hohe Umsetzungsgeschwindigkeit l{\"a}sst sich die Proteinkonzentration minimieren. F{\"u}r die {\"u}berwiegend an der O-Dealkylierung der Substrate beteiligten CYP-Enzyme wurden die Km-Werte ermittelt. Bei der Untersuchung von verschiedenen CYP-Inhibitoren zeigte sich, dass mit diesen Substraten vergleichbare IC50-Werte, wie mit den Standardsubstraten, erhalten werden. Die Harman-Derivate k{\"o}nnen daher zur Untersuchung der Inhibition wichtiger CYP-Enzyme eingesetzt werden und bieten eine Alternative zu den bisher vorhandenen Fluoreszenz-Substraten. Durch die Einstellung des pH-Wertes im Anschluss an die Inkubation lassen sich die Metaboliten ebenfalls fluorimetrisch in der Mikrotiterplatte detektieren und k{\"o}nnen f{\"u}r ein Hochdurchsatz-Screening eingesetzt werden. Allerdings m{\"u}ssen die Fluoreszenzeigenschaften weiter verbessert werden, um eine kontinuierliche Bestimmung w{\"a}hrend der Inkubation zu erm{\"o}glichen. In der pharmazeutischen Industrie besteht ein großes Interesse an der Detektion von reaktiven Metaboliten, um eine potentielle Lebertoxizit{\"a}t von neuen Wirkstoffen vorhersagen zu k{\"o}nnen. Hierf{\"u}r werden die Testsubstanzen mit humanen Lebermikrosomen inkubiert und die reaktiven Metaboliten mit Glutathion abgefangen. Zur Optimierung der LC/MS/MS-Analysen wurde in dieser Arbeit die Fragmentierung solcher Addukte anhand von Standardsubstanzen untersucht. Bei allen untersuchten Glutathion-Addukten trat eine Abspaltung der Pyroglutamins{\"a}ure bei positiver Polarit{\"a}t mit einer vergleichbaren Signalintensit{\"a}t auf, weshalb eine Detektion dieses Fragmentes durch einen Neutral-Loss-Scan am besten geeignet erschien. Mit Hilfe der Screening-Methode wurden zuerst Arzneistoffe untersucht, von denen reaktive Metaboliten bekannt sind. F{\"u}r die Bioaktivierung von Clozapin konnten CYP1A2, CYP2D6 und CYP3A4 identifiziert werden, w{\"a}hrend die Toxifizierung von Paracetamol haupts{\"a}chlich durch CYP1A2 und CYP3A4 erfolgte. Auff{\"a}llig war, dass mit steigender Paracetamolkonzentration keine S{\"a}ttigung der Umsetzung auftrat. Durchgef{\"u}hrte Molek{\"u}lver{\"a}nderungen am Glutathion, wie die Einf{\"u}hrung eines Dansylrestes oder eines Biotins, f{\"u}hrten zu keiner deutlichen Verbesserung der Detektion der reaktiven Metaboliten. Dar{\"u}ber hinaus zeigte sich, dass bei den markierten GSH-Derivaten die Umsetzung durch GSTs erheblich reduziert ist. Mit der Screening-Methode wurden allerdings viele falsch positive Signale erhalten, so dass diese nicht f{\"u}r eine Untersuchung von Extrakten lebertoxischer Pflanzen eingesetzt werden konnte. F{\"u}r eine eindeutige und schnelle Identifizierung der Signale als Glutathion-Addukte ist daher die hochaufl{\"o}sende Massenspektrometrie erforderlich. Eine weitere Klasse fremdstoffmetabolisierender Enzyme sind die Glutathion-S-Transferasen (GSTs), {\"u}ber deren Inhibition durch Arzneistoffe und Pflanzenextrakte in der Literatur nur wenige Daten vorliegen. Zur Entwicklung von Inhibitionsassays wurden die in der Literatur beschriebenen Substrate 1-Chlor-2,4-dinitrobenzol, 4 Nitrochinolin-N-oxid, 1,2-Dichlor-4-nitrobenzol und 4-Nitrobenzylchlorid verwendet. Die Detektion der Metaboliten erfolgte im Gegensatz zu der h{\"a}ufig eingesetzten Photometrie mit Hilfe der HPLC/UV- bzw. einer LC/MS/MS-Analyse. F{\"u}r die Kalibrierung wurden zun{\"a}chst die entsprechenden Glutathionkonjugate aus den Substraten synthetisiert. Bei den durchgef{\"u}hrten diskontinuierlichen Assays stellte die h{\"a}ufig auftretende nichtenzymatische Reaktion der Substrate mit Glutathion ein Problem dar. Durch die Erniedrigung des pH-Wertes des Inkubationspuffers von 7.4 auf 6.5 und der Senkung der Inkubationstemperatur von 37 °C auf 25 °C konnte die nichtenzymatische Reaktion w{\"a}hrend der Inkubation erheblich verlangsamt werden. Die nichtenzymatische Reaktion nach der Inkubation konnte durch Zugabe von Oxidationsmitteln gestoppt werden. Von den getesteten humanen Lebersubzell¬fraktionen besaß die cytosolische Fraktion bei allen Substraten die h{\"o}chste Aktivit{\"a}t. Im Rahmen der Assayentwicklung wurde die Glutathion-, die Proteinkonzentration und die Inkubationszeit optimiert. Es wurden die Km- und Vmax-Werte f{\"u}r die Umsetzung der Substrate ermittelt. Als Positivkontrolle diente das ebenfalls synthetisierte Glutathionkonjugat der Etacryns{\"a}ure, f{\"u}r das die IC50-Werte mit jedem Substrat bestimmt wurden. Dabei konnte ein Einfluss des pH-Wertes des Inkubationspuffers und der Inkubationstemperatur auf die gemessene inhibitorische Aktivit{\"a}t beobachtet werden. Anschließend wurde ein Screening von Arzneistoffen, ausgew{\"a}hlten Naturstoffen und etwa 50 Pflanzenextrakten auf eine Inhibition der GSTs in humanem Lebercytosol mit 1-Chlor-2,4-dinitrobenzol, das am schnellsten von allen Substraten umgesetzt wurde, durchgef{\"u}hrt. Von den getesteten Naturstoffen fiel eine ausgepr{\"a}gte Hemmung durch Biflavonoide auf. Nahezu alle untersuchten Pflanzenextrakte hemmten die GSTs. Eine starke Inhibition der GSTs zeigten Extrakte aus Cinnamomum cassia (Zimt), die sich als nicht-kompetitiv herausstellte. Weiterhin wurde eine starke Hemmung der Extrakte gerbstoffhaltiger Pflanzen, wie z. B. Hamamelis virginiana (virginische Zaubernuss) oder Krameria triandra (Ratanhia), beobachtet. Hier resultierten IC50-Werte zwischen 5 und 30 µg/ml. Ein Vergleich verschiedener Methoden zur Detektion des Metaboliten 2,4 Dinitrophenyl-S-glutathion zeigte, dass die Photometrie f{\"u}r die Untersuchung der Inhibition von Pflanzenextrakten aufgrund der St{\"o}rung durch die Pflanzenmatrix ungeeignet ist. Mit Hilfe der verwendeten HPLC/UV- sowie der LC/MS/MS-Analyse konnte der Metabolit selektiv erfasst werden und reproduzierbare Ergebnisse f{\"u}r die Inhibition der GSTs durch Pflanzenextrakte erzielt werden. Neben den GSTs wurde auch die Beeinflussung der Glutathionreduktase (GR) in dieser Arbeit untersucht. Hierf{\"u}r wurde ein HPLC-basierter Assay entwickelt, bei dem das reduzierte Glutathion mit 5,5´-Dithiobis(2-nitrobenzoes{\"a}ure) derivatisiert und das entstandene gemischte Disulfid aus Glutathion und 5-Thio-2-nitrobenzoes{\"a}ure quantifiziert wurde. Zur Untersuchung der Inhibition durch Pflanzenextrakte wurde humanes Lebercytosol verwendet, das von allen humanen Lebersubzellfraktionen die h{\"o}chste Aktivit{\"a}t besaß. Im Vergleich zu den GSTs wurde die GR durch die {\"u}berwiegende Zahl der ausgew{\"a}hlten Pflanzenextrakte kaum gehemmt. Eine nennenswerte Inhibition der GR konnte nur bei Extrakten von Juglans regia (Walnuss) beobachtet werden. Fazit In dieser Arbeit wurden eine Reihe von In-vitro-Methoden zur Untersuchung der Inhibition von CYP-Enzymen und weiteren fremdstoffmetabolisierenden Enzymen, wie CES oder GSTs, entwickelt. Aufgrund der dabei angewendeten selektiven HPLC-basierten Quantifizierung der Metaboliten durch UV-, Fluoreszenz- oder MS-Detektion k{\"o}nnen mit diesen Methoden auch Proben mit komplexer Matrix untersucht werden. F{\"u}r alle Assays wurden die Inkubationsbedingungen optimiert und die enzymkinetischen Parameter vieler Substrate ermittelt. Dar{\"u}ber hinaus wurden wichtige Erkenntnisse {\"u}ber die Isoenzymselektivit{\"a}t dieser Substrate gewonnen. Die Eignung der Assays wurde anhand von Standardinhibitoren bewiesen. Schließlich wurde die inhibitorische Aktivit{\"a}t von zahlreichen Pflanzenextrakten bestimmt, deren Auswirkung auf fremdstoffmetabolisierende Enzyme bisher unbekannt war. Die in dieser Arbeit beschriebenen Methoden k{\"o}nnen f{\"u}r die Untersuchung des Metabolismus von Arzneistoffen und der Inhibition fremdstoffmetabolisierender Enzyme, die f{\"u}r eine Zulassung neuer Wirkstoffe erforderlich ist, routinem{\"a}ßig eingesetzt werden.}, subject = {Xenobiotikum}, language = {de} } @article{TackeWagnerSperlich1994, author = {Tacke, Reinhold and Wagner, S. A. and Sperlich, J.}, title = {Synthese von (-)-(Acetoxymethyl)(hydroxy-methyl)methyl(phenyl)german [(-)-MePhGe(CH\(_2\)OAc)(CH\(_2\)OH)] durch eine Esterase-katalysierte Umesterung: Die erste enzymatische Synthese eines optisch aktiven Germans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64310}, year = {1994}, abstract = {No abstract available.}, subject = {Anorganische Chemie}, language = {de} } @phdthesis{Weil2001, author = {Weil, Kerstin}, title = {3-(R)-Hydroxys{\"a}uren als Produkte selektiven Fetts{\"a}ureabbaus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {In der vorliegenden Arbeit werden Studien zur selektiven bakteriellen Hydroxylierung von Fetts{\"a}uren vorgestellt. Unter Verwendung von Linols{\"a}ure als Substrat wurden aus Bodenproben verschiedene Mikroorganismen isoliert, die polare Metabolite bildeten. Die ph{\"a}notypische und genotypische Charakterisierung eines Stammes f{\"u}hrte zu dessen Identifizierung als Stenotrophomonas maltophilia. Die Strukturaufkl{\"a}rung der drei Hauptreaktionsprodukte erfolgte mittels Hochleistungsfl{\"u}ssigchromatographie-Massenspektrometrie (HPLC-MS), Gaschromatographie-Massenspektrometrie (GC-MS) sowie ein- und zweidimensionalen NMR-Experimenten (1H-NMR, 13C-NMR, 13C-DEPT, H/H-COSY, HMQC, HMBC). Linols{\"a}ure wurde von Stenotrophomonas maltophilia zu 3-Hydroxy-Z6-dodecens{\"a}ure, 3-Hydroxy-Z5,Z8-tetradecadiens{\"a}ure und 3-Hydroxy-Z7,Z10-hexadecadiens{\"a}ure umgesetzt. In einem anschließenden Substratscreening wurden 32 Verbindungen als Edukte f{\"u}r die Biotransformation eingesetzt und so die strukturellen Voraussetzungen ermittelt, die f{\"u}r eine effiziente Umsetzung von Fetts{\"a}uren durch Stenotrophomonas maltophilia notwendig sind. Zum Einsatz kamen Substrate mit unterschiedlicher Anzahl an C-Atomen sowie mit Variationen bez{\"u}glich Anzahl, Position und Konformation von Doppelbindungen. Weiterhin wurden Substanzen verwendet, die bereits funktionelle Gruppen im Molek{\"u}l aufwiesen (z. B. Ricinols{\"a}ure). Die Bestimmung der Enantiomerenverteilung der bakteriell gebildeten 3-Hydroxys{\"a}uren mittels multidimensionaler Gaschromatographie (MDGC) ergab einen deutlichen Enantiomeren{\"u}berschuss (ee 84 - 98 Prozent). Die Aufkl{\"a}rung der Absolutkonfiguration erfolgte {\"u}ber die Synthese von Dodecan-1,3-diolen und deren anschließende Analytik mittels MDGC. Zus{\"a}tzlich wurde die Konfiguration mit Hilfe der CD Exciton Chirality-Methode bestimmt. Weiterhin wurde untersucht, ob die bakteriell gebildeten 3-Hydroxys{\"a}uren als Substrate oder Inhibitoren des Enzyms Lipoxygenase L-1 aus Sojabohnen fungieren. Die im Rahmen dieser Arbeit durchgef{\"u}hrten Studien zur Darstellung von optisch aktiven 3-Hydroxys{\"a}uren belegen das Potential des Bodenbakteriums Stenotrophomonas maltophilia, exogen zugef{\"u}hrte Fetts{\"a}uren im Rahmen der b-Oxidation zu kettenverk{\"u}rzten, an Position 3 hydroxylierten Metaboliten abzubauen. Dabei liegen jedoch deutliche Abweichungen zur b-Oxidation in anderen Organismen vor, die auf Unterschieden in der Enzymausstattung bzw. deren Aktivit{\"a}t beruhen. Durch die gewonnenen Erkenntnisse zum b-Oxidationsmechanismus in Stenotrophomonas maltophilia kann diese Aktivit{\"a}t durch geeignete Substratauswahl gezielt zur Synthese von optisch aktiven 3-Hydroxys{\"a}uren eingesetzt werden, deren chemische Synthese gegen{\"u}ber dieser Biotransformation deutlich schwieriger zu realisieren ist. F{\"u}r solche Verbindungen besteht in der organischen Synthese von Naturstoffen wie Pheromonen, Vitaminen und Antibiotika Bedarf.}, subject = {Bodenbakterien}, language = {de} } @phdthesis{Colnot2001, author = {Colnot, Thomas}, title = {Beurteilung von Phyto- und Xeno{\"o}strogenen am Beispiel ausgew{\"a}hlter Substanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Bei Daidzein und Bisphenol A handelt es sich um zwei Vertreter einer Klasse von Stoffen, die als „Umwelthormone" (engl. endocrine disrupter) bezeichnet werden. Aus der Gruppe der Phyto{\"o}strogene wurde Daidzein als wichtiger Vertreter, der in hohen Konzentrationen in vielen Nutzpflanzen und Nahrungsmitteln vorkommt, ausgew{\"a}hlt. Sojaprodukte, die den gr{\"o}ßten Beitrag einer menschlichen Exposition gegen Daidzein liefern, werden in zunehmendem Maße auch in westlichen L{\"a}ndern konsumiert. Bisphenol A wurde als Vertreter der Xeno{\"o}strogene gew{\"a}hlt, da es - was Weltjahresproduktion und Verwendung angeht - die wohl wichtigste Substanz dieser Gruppe darstellt. Im ersten Teil der Arbeit wurde die Biotransformation und Toxikokinetik der beiden Verbindungen nach oraler Gabe in der Ratte aufgekl{\"a}rt. Dabei konnte gezeigt werden, daß die orale Bioverf{\"u}gbarkeit beider Substanzen in der Ratte sehr gering war. Maximal zehn Prozent der jeweils applizierten Dosis konnten im Urin der Tiere wiedergefunden werden. Als Hauptmetabolit wurden sowohl von Daidzein als auch von Bisphenol A das jeweilige Glucuronid-Konjugat gebildet. Bei Daidzein {\"u}berwog in der m{\"a}nnlichen Ratte zus{\"a}tzlich das Sulfat-Konjugat. Der Anteil an freier, d.h. unkonjugierter Verbindung betrug im Urin der Tiere zwischen 1 und 3 Prozent der Dosis. Außer den Phase II-Konjugaten, die aufgrund ihrer mangelnden {\"o}strogenen Wirksamkeit zu einer Detoxifizierung der beiden Verbindungen f{\"u}hrte, konnten nach Gabe von Bisphenol A in der Ratte keine weiteren Metabolite identifiziert werden. Nach Exposition mit Daidzein konnten in den Faeces der Tiere in geringem Umfang die beiden reduktiven Metabolite Equol und O-DMA gefunden werden. Diese wurden wahrscheinlich im Magen-Darm-Trakt durch die Bakterien der Darmflora gebildet. Sowohl Daidzein als auch Bisphenol A wurden bei der Ratte nur unvollst{\"a}ndig aus dem Magen-Darm-Trakt resorbiert; der Großteil der gegebenen Dosis wurde als unver{\"a}nderte Substanz in den Faeces wiedergefunden. Bei Bisphenol A wurde die Ausscheidung zudem durch einen ausgepr{\"a}gten enterohepatischen Kreislauf verz{\"o}gert. Im zweiten Teil der Arbeit wurden zun{\"a}chst empfindliche GC/MS- und HPLC-Methoden zur Quantifizierung der Verbindungen in humanen Plasma- und Urinproben entwickelt. Danach wurden freiwillige Probanden oral mit jeweils 5 mg Daidzein bzw. d16-Bisphenol A exponiert, um Daten zur Biotransformation und Toxikokinetik der beiden Substanzen im Mensch zu erhalten. Wegen des deutlich meßbaren Hintergrundes an Bisphenol A, das in allen Kontrollproben nachweisbar war, wurde f{\"u}r die Humanstudie die deuterierte Verbindung gegeben, f{\"u}r die kein st{\"o}render Hintergrund meßbar war. Die Bioverf{\"u}gbarkeit der Gesamt-Substanz (freie Verbindung + Konjugate) im Menschen war in beiden F{\"a}llen deutlich h{\"o}her als in der Ratte. Von Daidzein wurden 40 Prozent (Ratte 10 Prozent), von Bisphenol A > 95 Prozent (Ratte 13 Prozent) der applizierten Dosis im Urin der Probanden wiedergefunden. Dabei zeigte sich ein sehr effizienter Phase II-Metabolismus; weniger als 1 Prozent der Glucuronid-Konjugatkonzentrationen wurden als unver{\"a}nderte Substanz gefunden. Das Glucuronid stellte in beiden F{\"a}llen den einzigen nachweisbaren Metaboliten dar. Die Elimination von Daidzein und Bisphenol A verlief in den beiden Studien sehr schnell nach einer Kinetik erster Ordnung. Im Gegensatz zu der Ratte konnten auch bei Bisphenol A keine Auff{\"a}lligkeiten in den Ausscheidungskurven beobachtet werden, Hinweise auf einen enterohepatischen Kreislauf im Menschen wurden nicht gefunden. Im Falle von Bisphenol A wurde fast die komplette applizierte Dosis (> 95 Prozent) in Form des Glucuronides im Urin wiedergefunden. Anhand der erhobenen Daten wurde anschließend eine Beurteilung des Risikos f{\"u}r den Menschen abgegeben.}, subject = {Phyto{\"o}strogen}, language = {de} }