@phdthesis{Friedrich2015, author = {Friedrich, Alexandra}, title = {Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein f{\"u}r SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Dom{\"a}ne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschn{\"u}rung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abh{\"a}ngig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 f{\"u}hrte, w{\"a}hrend der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabh{\"a}ngigen Regulation konnte f{\"u}r SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. F{\"u}r die CNTs war eine derartige Zuckerabh{\"a}ngigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem S{\"a}ugetier gezeigt werden k{\"o}nnen. Hierzu wurden Mutanten der regulatorischen Dom{\"a}ne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gew{\"a}hrleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, w{\"a}hrend die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren f{\"u}hrte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was f{\"u}r eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass {\"u}ber Nanohydrogele l{\"a}ngere Proteine in die Zelle gebracht werden k{\"o}nnen und dort funktionell freigesetzt werden.}, subject = {Glucosetransport}, language = {de} } @phdthesis{Schulz2012, author = {Schulz, Alexander}, title = {Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport {\"u}ber die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierf{\"u}r wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkr{\"a}fte des vakuol{\"a}ren Zuckertransportes erm{\"o}glichten. Zus{\"a}tzlich wurden Lokalisations- und Interaktionsstudien zu ausgew{\"a}hlten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgef{\"u}hrt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuol{\"a}re glucose- und saccharose-induzierte Protonen-Transportkapazit{\"a}ten in Mesophyllvakuolen von Wildtyp-pflanzen aufgel{\"o}st werden, die eindeutig einen Antiportmechanismus f{\"u}r beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinit{\"a}t und hohe Transportkapazit{\"a}t f{\"u}r den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkr{\"a}fte der Zuckertransportaktivit{\"a}t herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abh{\"a}ngigen H+-Pumpaktivit{\"a}t auf die pH-Hom{\"o}ostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant f{\"u}r die Zuckertransporter zu fungieren. Dar{\"u}ber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole n{\"a}her charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich f{\"u}r den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter {\"U}berexpression in Zuckertransporter-Verlustmutanten eindeutig aufgel{\"o}st und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bez{\"u}glich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Wais2012, author = {Wais, Sebastian}, title = {Die Rolle der Glukosetransporter an der Blut-Hirn-Schranke nach einem Sch{\"a}del-Hirn-Trauma und deren eventueller Einfluss auf die Entwicklung eines sekund{\"a}ren Hirn{\"o}dems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78998}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Laut der Weltgesundheitsorganisation (WHO) waren in Deutschland 2006 akute isch{\"a}mische Ereignisse des Zentralen Nervensystems (ZNS) die f{\"u}nfth{\"a}ufigste Todesursache. Zu diesen isch{\"a}mischen Ereignissen z{\"a}hlen Schlaganfall, Kardiopulmonale Reanimation, traumatische Hirnverletzungen, sowie perioperative isch{\"a}mische Komplikationen. Aufgrund der schwerwiegenden Folgen, die ein Verlust von Nervenzellen f{\"u}r den Patienten bedeutet, muss die weitere medizinische Akutversorgung den sekund{\"a}ren neuronalen Schaden verhindern oder ihn reduzieren. Vor dieser Arbeit konnten Glukosetransporter-1 (GLUT-1) und Natrium-Glukose-Kotransporter-1 (SGLT1) an der Blut-Hirn-Schranke (BHS) identifiziert werden. Ziel dieser Arbeit war es, das Expressionsverhalten der Glukosetransporter nach einem Sch{\"a}del-Hirn-Trauma (SHT) in vivo und in vitro zu untersuchen, um so den Einfluss und die funktionellen Folgen durch die ver{\"a}nderte Expression der zerebralen Glukosetransporter in der BHS infolge eines SHT zu identifizieren und deren eventuellen Einfluss auf die Entwicklung eines sekund{\"a}ren Hirn{\"o}dems zu erkennen. Hierf{\"u}r wurde als in vivo-Modell das Controlled Cortical Impact Injury (CCII) gew{\"a}hlt, da bei diesem Tierversuchsmodell die Aspekte der traumatischen Kontusion und die damit verbundenen intraparenchymalen Blutungen durch ein epidurales oder subdurales H{\"a}matom im Vordergrund stehen. Es wurden Gehirnschnitte zu fest definierten Zeitpunkten angefertigt (kein CCII (Kontrolle), 15 Minuten {\"U}berleben nach CCII (Prim{\"a}rschaden), 24 Stunden {\"U}berleben nach CCII und 72 Stunden {\"U}berleben nach CCII). Die Darstellung des prim{\"a}ren Schadens im M{\"a}usehirn erfolgte durch die Immunfluoreszenzmikroskopie. Um einen Gewebeschaden, wie es bei einem Hirntrauma der Fall ist, in vitro zu simulieren, wurde das Modell des Sauerstoff-Glukose-Entzuges (OGD) gew{\"a}hlt, da es bei diesem Modell neben einer Nekrose auch zur Apoptose der Nervenzellen kommt, welche ebenfalls bei einem SHT stattfindet. Als geeignetes Zellkulturmodell wurde die cerebralen Endothelzelllinie (cEND) gew{\"a}hlt. Bei dieser Zelllinie handelte es sich um eine Hirnendothelzelllinie aus der Maus. In den in vivo-Versuchen konnte bei GLUT-1 bereits 15 Minuten nach CCII eine gesteigerte Expression festgestellt werden. Dennoch verminderte GLUT-1 im weiteren Verlauf seine Expression auf ein Minimum, welches unterhalb des Ausgangswertes lag. SGLT1, der auch in der BHS identifiziert wurde, reagierte auf einen Prim{\"a}rschaden erst in den Hirnschnitten, die 24 Stunden nach CCI behandelt wurden. In den Hirnschnitten, die 15 Minuten nach CCII behandelt wurden, ver{\"a}nderte sich die SGLT1-Expression zun{\"a}chst nicht. Erst 24 Stunden nach CCII konnte eine gesteigerte Expression von SGLT1 erkannt werden, die aber bei 72 Stunden nach CCII wieder abgenommen hatte. Ein weiterer Glukosetransporter konnte erstmals in der BHS identifiziert werden. SGLT2 zeigte erst 72 Stunden nach CCII eine gesteigerte Expression, in den Hirnschnitten ohne CCII, 15 Minuten nach CCII und 24 Stunden nach CCII konnte keine Ver{\"a}nderung der SGLT2-Expression festgestellt werden. Diese Expressionsreaktion, besonders der Expressions-H{\"o}hepunkt der einzelnen Glukosetransporter, konnte auch in vitro gezeigt werden. Besonders die Identifizierung von SGLT2 in der BHS und die generelle Steigerung der Expressionsrate von GLUT-1, SGLT1 und SGLT2 k{\"o}nnte neue Ansatzpunkte in der Pathophysiologie des diffusen Hirn{\"o}dems nach einem SHT ergeben. Die genaue Rolle der Natriumgekoppelten Glukosetransporter in der BHS muss noch weiter erforscht werden. Best{\"a}tigen weitere Versuche eine zentrale Rolle der SGLTs bei der Entstehung des sekund{\"a}ren Hirnschadens, speziell SGLT2, als hochpotenter Glukosetransporter, so k{\"o}nnte {\"u}ber neue Therapien nachgedacht werden, durch welche spezifisch die Expression der SGLTs, besonders SGLT2, wie es bei Dapagliflozin, Canagliflozin oder Ipragliflozin der Fall w{\"a}re, unterdr{\"u}cken w{\"u}rden.}, subject = {Hirn{\"o}dem}, language = {de} }