@phdthesis{Riedel2004, author = {Riedel, Michael}, title = {Rutschige Oberfl{\"a}chen von karnivoren Kannenpflanzen (Nepenthaceae) : Physikalisch-chemische Eigenschaften und mikroskopische Struktur epikutikul{\"a}rer Wachskristalle von Nepenthes alata, N. albomarginata und N. intermedia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9467}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Pflanzen der Gattung Nepenthes decken einen erheblichen Anteil ihres N{\"a}hrstoffbedarfs durch den Fang und die Verdauung tierischer Beute, insbesondere von Insekten. Als Fangorgane dienen kannenf{\"o}rmig umgewandelte Blattspreiten. Die Kanneninnenseiten sind in einer breiten Zone dicht mit epikutikul{\"a}ren Wachskristallen besetzt. Die Oberfl{\"a}chen dieser so genannten Gleitzone sind extrem rutschig f{\"u}r die meisten Insekten und spielen eine zentrale Rolle beim Fang und der Zur{\"u}ckhaltung der Beute in der Kanne. Fr{\"u}here Untersuchungen beschrieben die Kristalle dabei als extrem fragil, wodurch diese unter der mechanischen Belastung eines Insekts leicht abrechen und somit der Kontakt zur Pflanzenoberfl{\"a}che verloren geht. Um diese Hypothese zu {\"u}berpr{\"u}fen und den Mechanismus der Rutschigkeit verstehen zu k{\"o}nnen, hatte die vorliegende Arbeit zum Ziel, sowohl die strukturellen als auch die physikalisch-chemischen Eigenschaften der Wachskristalle in den Kannen von drei Nepenthes-Arten vergleichend zu charakterisieren. Diese Eigenschaften k{\"o}nnen jedoch nur dann bewertet werden, wenn die chemische Zusammensetzung der Wachskristalle verl{\"a}sslich bestimmt werden kann. Um die gaschromatographische Trennung und massenspektrometrische Analyse der Komponenten zu erleichtern, werden hydroxyl-haltige Verbindungen h{\"a}ufig durch eine Derivatisierung mit N,O-Bis(trimethylsilyl)trifluoracetamid (BSTFA) in die entsprechenden Trimethylsilyl-Ether bzw. -Ester {\"u}berf{\"u}hrt. Dabei k{\"o}nnen jedoch auch unerw{\"u}nschten Nebenreaktionen carbonyl-haltiger Verbindungen auftreten, die eine quantitative Analyse der urspr{\"u}nglichen Komponenten erschweren. Im ersten Teil dieser Arbeit ergab die {\"U}berpr{\"u}fung der Derivatisierungsreaktion, dass aliphatische Aldehyde mit BSTFA zu cis-trans isomeren Alkenyl-Trimethylsilyl-Ethern und Alkenyl-Acetamid-Addukten reagierten. Weiterhin bildeten sich aus Aldehyden und prim{\"a}ren Alkoholen unter den gegebenen Bedingungen, cis-trans isomere Alkenyl-Alkyl-Ether. Es konnte gezeigt werden, dass eine verl{\"a}ssliche und quantitative Bestimmung der urspr{\"u}nglich vorhandenen Aldehyd- und Alkoholmengen nur unter einer Quantifizierung der in den resultierenden Nebenprodukten gebundenen Mengen m{\"o}glich war. Im zweiten Teil dieser Arbeit zeigten rasterelektronenmikroskopische Untersuchungen an den Gleitzonenoberfl{\"a}chen von drei Nepenthes-Arten, dass die epikutikul{\"a}ren Wachskristalle ein Netzwerk aus glattrandigen Pl{\"a}ttchen bilden und senkrecht aus den Oberfl{\"a}chen herausstehen. Es wurden Methoden etabliert, die eine mechanische Pr{\"a}paration der Wachs-kristalle von den Gleitzonenoberfl{\"a}chen erlaubten. Dabei zeigten die Kristalle eine hohe strukturelle Integrit{\"a}t. Die Beprobungsstrategien erwiesen sich als selektiv f{\"u}r die epikutiku-l{\"a}ren Wachse und somit f{\"u}r die Schnittstelle der Pflanze-Insekten-Wechselwirkung. Die anschließenden chemischen Analysen zeigten deutliche Gradienten zwischen den Zusammen-setzungen der epikutikul{\"a}ren und intrakutikul{\"a}ren Wachskompartimente. Die epikutikul{\"a}ren Kristalle bestanden aus Mischungen aliphatischer Komponenten und waren von sehr lang-kettigen Aldehyden dominiert. Triacontanal war in allen F{\"a}llen die Hauptkomponente und weitgehend f{\"u}r die Kristallbildung verantwortlich. Diese Ergebnisse quantifizierten erstmalig direkt die Zusammensetzung epikutikul{\"a}rer Wachskristalle und best{\"a}tigten die f{\"u}r deren Bildung urspr{\"u}ngliche Hypothese einer spontanen Phasentrennung eines hochkonzentrierten Bestandteils. Die schlechte L{\"o}slichkeit der Kristalle von verschiedenen Nepenthes-Arten in Chloroform wies zudem darauf hin, dass sie polymere Formen der Aldehyde beinhalteten. Diese Vermutung konnte im dritten Teil dieser Arbeit durch ATR-FTIR-spektroskopische Untersuchungen best{\"a}tigt werden. Die Kombination dieser Analysetechnik mit einer der mechanischen Beprobungsstrategien zeigte, dass weder isolierte Kristalle, noch Kristalle auf nativen Oberfl{\"a}chen, monomere Aldehyde beinhalteten. Diese konnten jedoch durch Tempe-raturerh{\"o}hung oder L{\"o}sen in Chloroform unter erh{\"o}hter Temperatur freigesetzt werden. Auf Grund charakteristischer Absorptionseigenschaften, der molekularen Anordnung sowie dem Phasenverhalten der beteiligten Komponenten konnte geschlossen werden, dass die Aldehyde in nativen Kristallen in Form von Polyacetalen vorliegen. Dies l{\"a}sst vermuten, dass die epikutikul{\"a}ren Wachskristalle dadurch nicht nur thermisch und chemisch, sondern auch mechanisch verst{\"a}rkt werden. Werden alle Daten zusammengefasst, k{\"o}nnen die strukturellen sowie physikalisch-chemischen Eigenschaften der epikutikul{\"a}ren Wachskristalle auf den Gleitzonenoberfl{\"a}chen verschiedener Nepenthes-Arten im Kontext ihrer {\"o}kologischen Funktion neu beurteilt werden. Auf diesen Ergebnissen basierend kann die Hypothese aufgestellt werden, dass die Kristalle im Kr{\"a}ftebereich, den ein Haftorgan eines Insektes auf sie aus{\"u}bt, mechanisch stabil sind und somit andere Mechanismen die Rutschigkeit verursachen.}, subject = {Kannenpflanze}, language = {de} }