@phdthesis{Lange2012, author = {Lange, Sebastian}, title = {Turbulenz und Teilchentransport in der Heliosph{\"a}re - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseausw{\"u}rfen zur{\"u}ckgef{\"u}hrt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Ver{\"a}nderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosph{\"a}rischen Bedingungen bei drei solaren Radien best{\"a}tigt werden. Vor allem zeigten sich Hinweise f{\"u}r das Erreichen der kritischen Balance, einem Schl{\"u}sselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden pr{\"a}sentiert, in denen die Bedeutsamkeit f{\"u}r die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erkl{\"a}rt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Dar{\"u}ber hinaus wurden grundlegende Erkenntnisse {\"u}ber die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verst{\"a}ndnis f{\"u}r die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr ad{\"a}quat beschrieben werden k{\"o}nnen.}, subject = {Heliosph{\"a}re}, language = {de} } @phdthesis{Wisniewski2011, author = {Wisniewski, Martina}, title = {Numerische Untersuchung von Turbulenz und Teilchentransport in der Heliosphaere}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Hochenergetische solare Teilchen werden bei ihrem Transport durch die Heliosph{\"a}re an turbulenten Magnetfeldern gestreut. F{\"u}r das Verst{\"a}ndnis dieses Streuprozesses ergeben sich aus heutiger Sicht zwei wesentliche Hindernisse: - Bei der Streuung hochenergetischer Teilchen an turbulenten Magnetfeldern handelt es sich um einen nichtlinearen Prozess, der durch analytische Theorien kaum zu beschreiben ist. - Der Streuprozess h{\"a}ngt stark von den tats{\"a}chlichen Magnetfeldern und somit auch von der Magnetfeldturbulenz ab. Unser bisheriges Verst{\"a}ndnis der heliosph{\"a}rischen Turbulenz ist leider aufgrund sp{\"a}rlicher experimenteller Daten deutlich eingeschr{\"a}nkt, was eine qualifizierte Umsetzung in analytischen und numerischen Ans{\"a}tzen deutlich erschwert. Dies machte in der Vergangenheit k{\"u}nstliche Annahmen f{\"u}r die Modellerstellung notwendig. In dieser Arbeit wird der Teilchentransport mit Hilfe der Simulation von Testteilchen in einem turbulenten, magnetohydrodynamischen Plasma untersucht. Durch die Testteilchen werden auch die nichtlinearen Streuprozesse korrekt wiedergegeben, wodurch das erste hier genannte Hindernis {\"u}berwunden wird. Dies wurde auch bereits in fr{\"u}heren numerischen Untersuchungen erfolgreich angewendet. Die Modellierung der Turbulenz f{\"u}r den Fall des Teilchentransports erfolgt in dieser Arbeit erstmalig auf Grundlage der magnetohydrodynamischen Gleichungen. Dabei handelt es sich um die mathematisch korrekte Wiedergabe der Magnetfeldturbulenz unterhalb der Ionen-Gyrofrequenz mit nur geringen numerischen Einschr{\"a}nkungen. Dar{\"u}ber hinaus erlaubt ein auf das physikalische Szenario anpassbarer Turbulenztreiber eine noch realistischere Simulation der Turbulenz. Durch diesen universell g{\"u}ltigen, numerischen Ansatz k{\"o}nnen f{\"u}r das zweite hier angegebene Hindernis jegliche k{\"u}nstlichen Annahmen vermieden werden. Die drei im Rahmen dieser Arbeit erstmals zusammengef{\"u}hrten Methoden (Testteilchen, magnetohydrodynamische Turbulenz, Turbulenztreiber) erm{\"o}glichen somit eine Untersuchung und Analyse von Transport- und Turbulenzph{\"a}nomenen mit herausragender Qualit{\"a}t, die insbesondere f{\"u}r den Fall des Teilchentransports einen direkten Anschluss an experimentelle Ergebnisse erm{\"o}glichen. Wichtige Ergebnisse im Rahmen dieser Arbeit sind: - der Nachweis der Drei-Wellen-Wechselwirkung f{\"u}r schwache und einsetzende starke Turbulenz. - eine Analyse der Anisotropie der Turbulenz im Bezug auf das Hintergrundmagnetfeld in Abh{\"a}ngigkeit vom Treibmodell. Insbesondere die Anisotropie ist experimentell bislang kaum erfassbar. - eine Untersuchung der Auswirkung der Gyroresonanzen auf die Diffusionskoeffizienten hochenergetischer solarer Teilchen in allgemeiner Form. - die Simulation des Teilchentransports in der Heliosph{\"a}re auf Grundlage experimenteller Messdaten. Die genauere Analyse der Simulationsergebnisse erm{\"o}glicht insgesamt einen Zugang zum Verst{\"a}ndnis des Transports, der durch experimentelle Untersuchungen nicht erfassbar ist. Bei der Simulation wurden lediglich die Magnetfeldst{\"a}rke sowie die untersuchte Teilchenenergie vorgegeben. Aus der Analyse der Simulationsergebnisse ergibt sich dieselbe mittlere freie Wegl{\"a}nge, wie sie auch durch andere Verfahren direkt aus den Messergebnissen gewonnen werden konnte. Auch die vorwiegende Ausrichtung der hochenergetischen Teilchen parallel und antiparallel zum Hintergrundmagnetfeld in der Simulation entspricht experimentellen Untersuchungen. Es zeigt sich, dass diese allein aus den resonanten Streuprozessen der Teilchen mit den Magnetfeldern resultiert. Des Weiteren werden die Art der Diffusion, der Energieverlust der Teilchen w{\"a}hrend des Transportprozesses sowie die G{\"u}ltigkeit der quasilinearen Theorie untersucht.}, subject = {Sonnenwind}, language = {de} } @phdthesis{Burkart2010, author = {Burkart, Thomas}, title = {Der Einfluss des fundamentalen Massenverh{\"a}ltnisses auf die Teilchenbeschleunigung durch Plasmainstabilit{\"a}ten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Im Rahmen dieser Arbeit wurde ein dreidimensionaler vollrelativistischer und parallelisierter Particle-in-Cell Code geschrieben, ausf{\"u}hrlich getestet und angewandt. Der Code ACRONYM ist variabel einsetzbar und von der Genauigkeit und Stabilit{\"a}t her State-of-the-Art und somit konkurrenzf{\"a}hig zu den sonstigen in der Astrophysik eingesetzten Codes anderer Gruppen. Die Energie bleibt bis auf einen Fehler von < 0.03\% erhalten, die Divergenz des Magnetfeldes bleibt immer unter einem Wert von 10^{-12} und die Skalierung wurde mittlerweile bis zu einem Clustergr{\"o}ße von einigen 10000 CPUs getestet. In dieser Arbeit wurde dann, nach der Entwicklung des Codes, der Einfluss des fundamentalen Massenverh{\"a}ltnisses m_p/m_e auf die Teilchenbeschleunigung durch Plasmainstabilit{\"a}ten untersucht. Dies ist relevant und wichtig, da in PiC-Simulationen in den allermeisten F{\"a}llen nicht mit dem realen Massenverh{\"a}ltnis gerechnet wird, da sonst viel zu viel Rechenleistung ben{\"o}tigt w{\"u}rde, um zu sehen, was mit den Protonen geschieht und was ihr Einfluss auf die leichten Teilchen wie Elektronen und Positronen ist. Zu diesem Zweck wurden Simulationen mit Massenverh{\"a}ltnissen zwischen m_p/m_e = 1.0 und 200.0 durchgef{\"u}hrt. Diese haben alle gemeinsam, dass periodische Randbedingungen verwendet wurden und das zur Verf{\"u}gung stehende Simulationsgebiet mit jeweils zwei gegeneinander str{\"o}menden Plasmapopulationen vollst{\"a}ndig gef{\"u}llt wurde, um jegliche Art von auftretenden Schocks auszuschließen. Die Rohdaten der einzelnen Simulationen wurden auf vielf{\"a}ltige Art und Weise analysiert, es wurden z.B. Schnitte durch die Teilchenverteilung erstellt, sowie ein- oder zweidimensionale Histogramme und Energieverl{\"a}ufe betrachtet. Dabei haben sich folgende Kernpunkte ergeben: F{\"u}r Massenverh{\"a}ltnisse bis etwa m_p/m_e = 20 bildet sich die gesamte Zweistrom-Instabilit{\"a}t in nur einer Phase aus, das heißt, es bilden sich von ringf{\"o}rmigen Magnetfeldern umgebene Flussschl{\"a}uche aus, die dann verschmelzen, bis nur noch zwei {\"u}brig sind und alle Teilchen werden {\"u}ber den gesamten Verlauf der Instabilit{\"a}t beschleunigt. Es ist damit zu folgern, dass die unterschiedlich schweren Teilchenspezies Protonen und Elektronen/Positronen durch die relativ nahe beieinander liegenden Massen noch so stark gekoppelt sind, dass sich nur eine Instabilit{\"a}t entwickeln kann. Bei großen Massenverh{\"a}ltnissen (m_p/m_e > 20) ist eine deutliche Trennung in zwei Phasen der Instabilit{\"a}t zu erkennen. Zuerst bilden sich wiederum Flussschl{\"a}uche aus, diese verschmelzen miteinander (zu zweien oder mehr), bevor der erste Teil der Instabilit{\"a}t abflaut. Anschließend entstehen wieder ringf{\"o}rmige Magnetfelder und Flussschl{\"a}uche, von denen einer meist deutlich st{\"a}rker ist als all die anderen, das bedeutet, dass dieser von st{\"a}rkeren Magnetfeldern umgeben ist und eine h{\"o}here Teilchendichte aufweist. Im Rahmen dieser zweigeteilten Instabilit{\"a}t werden die Elektronen und Positronen nur in der ersten Phase signifikant beschleunigt, die deutlich schwereren Protonen gewinnen {\"u}ber den gesamten Zeitraum Energie. Die h{\"o}chstenergetischen Teilchen erreichen im Ruhesystem der jeweiligen Plasmapopulation Werte um gamma = 250. Man kann daraus f{\"u}r zuk{\"u}nftige Untersuchungen mit Hilfe von Particle-in-Cell Codes den Schluss ziehen, dass R{\"u}ckschl{\"u}sse auf das tats{\"a}chliche Verhalten beim realen Massenverh{\"a}ltnis von m_p/m_e = 1836.2 nur aus den Simulationen mit m_p/m_e >> 20 gezogen werden k{\"o}nnen, da die starke Kopplung der leichten und schweren Teilchen bei kleineren Massenverh{\"a}ltnissen die Ergebnisse sehr stark beeinflusst. Es wurde anhand der gemessenen Zeitpunkte der Instabilit{\"a}tsmaxima eine Extrapolation durchgef{\"u}hrt, die zeigt, dass die Instabilit{\"a}t beim realen Massenverh{\"a}ltnis etwa bei t = 1400 omega_{pe}^{-1} auftreten w{\"u}rde. Um dies wirklich zu simulieren m{\"u}sste allerdings mehr als die 1000-fache Anzahl an CPU-Stunden aufgewandt werden. Des weiteren wurde eine Maxwell-J{\"u}ttner-Verteilung an die Teilchenverteilungen der einzelnen Simulationen auf dem H{\"o}hepunkt der Instabilit{\"a}t gefittet, um sowohl die neue Temperatur des Plasmas als auch die Beschleunigungseffizienz des Prozesses zu berechnen. Die Temperatur erh{\"o}ht sich demnach durch die Instabilit{\"a}t von etwa 10^8K auf 10^{10} bis 10^{11}K, der Anteil suprathermischer Teilchen betr{\"a}gt 2 bis 4\%.}, subject = {Astrophysik}, language = {de} } @phdthesis{Seyferth2001, author = {Seyferth, Michael}, title = {Numerische Modellierungen kontinentaler Kollisionszonen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3220}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Orogene Prozesse in kontinentalen Kollisionszonen werden in zwei- und dreidimensionalen numerischen Modellen auf Basis der Finite-Elemente Methode (FEM) untersucht. Dabei stehen die Verteilung der Deformation innerhalb der Modellkruste, die korrespondierenden Spannungsfelder und die aus Temperaturfelddaten und Partikelpfaden abgeleitete metamorphe Entwicklung von Krustengesteinen im Vordergrund. Die Studie gliedert sich in einen methodischen Teil, umfangreiche Parameterstudien und spezielle Anwendungen auf fossile und rezente Orogene. Kontinentale Kollisionszonen sind - insbesondere in den tieferen Krustenstockwerken - durch hohe Betr{\"a}ge penetrativer Deformation gekennzeichnet. Im methodischen Teil der Arbeit wird eine Technik vorgestellt, mit deren Hilfe Verformungen des beobachteten Umfangs mit dem auf rein LAGRANGEscher Formulierung basierenden kommerziellen FE-Programmpaket ANSYS® modelliert werden k{\"o}nnen. Die speziell f{\"u}r Fragestellungen orogener Krustendynamik entwickelten Programmpakete OROTRACK bzw. OROTRACK3D umfassen Neuvernetzungs- und Ergebnisverwaltungsalgorithmen, die eine Modellierung von Konvergenzbetr{\"a}gen bis zu mehreren hundert Kilometern erlauben. Zus{\"a}tzlich k{\"o}nnen mittels einer Schnittstelle zu Oberfl{\"a}chenmodellen die Folgen exogener Prozesse auf die orogene Dynamik ber{\"u}cksichtigt werden. Weitere Charakteristika der Modellierungstechnik sind eine vollst{\"a}ndige thermomechanische Kopplung, die Anwendung differenzierter Materialeigenschaften f{\"u}r verschiedene Krustenstockwerke sowie die M{\"o}glichkeit, die Deformation - den lokal herrschenden Druck- und Temperaturbedingungen entsprechend - entweder durch spr{\"o}de oder duktile Materialgesetze zu approximieren. Die zur Beschreibung eines Kollisionsszenarios aufgebrachten Randbedingungen basieren auf den Grundlagen eines Mantelsubduktionsmodells (Willett et al. 1993). In 2D-Modellen wird ebene Verformung in einem Schnitt durch die kontinentale Kruste zweier kollidierender Platten modelliert, die basal einer vom lithosph{\"a}rischen Mantel aufgepr{\"a}gten Verschiebung unterliegen. Wird der lithosph{\"a}rische Mantel der linken Platte an einem Punkt S unter die rechte Platte subduziert, ergibt sich f{\"u}r den linken Modellteil eine horizontale Verschiebung der Modellbasis nach rechts, w{\"a}hrend im rechten Modellteil keine Verschiebung der Modellbasis erlaubt ist. Im Bereich des Punktes S kommt es zu einer Diskontinuit{\"a}t der basalen Geschwindigkeit und somit zu maximaler Deformation. In publizierten Kollisionsmodellen, die auf {\"a}hnlichen Ans{\"a}tzen beruhen, wird h{\"a}ufig rein spr{\"o}des Materialverhalten angenommen oder der duktile Anteil der Kruste durch geringe Krustentemperaturen klein und hochviskos gehalten. Unter diesen Bedingungen kann eng auf das Orogenzentrum lokalisierte Deformation mit einem typischerweise bivergenten Strukturmuster abgebildet werden (Willett et al. 1993 u.a.). Demgegen{\"u}ber beweist eine erste Reihe zweidimensionaler Parameterstudien eine starke Abh{\"a}ngigkeit des beobachteten Deformationsmusters von den herrschenden Krustentemperaturen und der Konvergenzrate. Bei h{\"o}heren Krustentemperaturen bildet sich demnach ein Entkopplungshorizont an der Krustenbasis, der f{\"u}r die oberen Krustenstockwerke eine verbreiterte und diffuse Deformationszone bedingt und die erzielte Krustenverdickung limitiert. {\"U}ber die Verformungsratenabh{\"a}ngigkeit des duktilen Materialverhaltens und den unterschiedlichen Grad thermischer Reequilibrierung innerhalb der verdickten Kruste haben Variationen der Konvergenzrate {\"a}hnliche Auswirkungen auf das orogene Deformationsmuster. Verbesserte Modelle mit Neuvernetzungstechnik werden in Parameterstudien getestet, die den Einfluss unterschiedlicher Temperatur-Viskosit{\"a}tsfunktionen auf die Lokalisierung der Deformation und die resultierende synkonvergente Exhumierung metamorpher Gesteine quantifizieren. Ein rheologisches Verhalten, das eine effiziente mechanische Kopplung innerhalb des Krustenprofils gew{\"a}hrleistet, ist demzufolge nicht nur Voraussetzung f{\"u}r lokalisierte Krustenverdickung, sondern auch f{\"u}r rasche Exhumierung von Unterkrustengesteinen durch ein Zusammenspiel von Erosion und isostatischer Hebung. Die Modelle zeigen weiter, dass maximale Exhumierungsbetr{\"a}ge bei rheologisch vergleichsweise festem Verhalten der Unterkruste erzielt werden. Im Einzelnen kann die Variabilit{\"a}t der Versenkungs- und Exhumierungsgeschichte von Materialpunkten im Modellschnitt aus synthetischen PT-Pfaden ersehen werden. Der Wirkungskomplex um Krustentemperaturen, orogene Deformationslokalisierung und synkonvergente Exhumierung ist f{\"u}r die Kollisionsphase der variscischen Orogenese in Mitteleuropa von besonderer Bedeutung. Hochtemperaturmetamorphose und weitverbreitete granitoide Intrusionst{\"a}tigkeit sind hier Ausdruck hoher Krustentemperaturen; dennoch sind an den Grenzen der klassischen tektonometamorphen Einheiten - im Bereich von Schwarzwald und Vogesen sowie der Mitteldeutschen Kristallinschwelle (MDKS) - eng lokalisierte Teilorogene mit bivergentem Strukturmuster sowie eine rasche synkonvergente Exhumierung amphibolitfazieller Gesteine dokumentiert. Ein solches Nebeneinander ist aus Sicht der Parameterstudien nur durch eine vergleichsweise hochviskose Unterkrustenrheologie zu erkl{\"a}ren. In einer Fallstudie zur MDKS kommen in neueren experimentellen Arbeiten bestimmte Kriechparameter (Mackwell et al. 1998) zur Anwendung, mit denen ein derartiges Materialverhalten simuliert werden kann. Der in den reflexionsseismischen Profilen DEKORP 2N und 2S dokumentierte großmaßst{\"a}bliche Strukturbau im Bereich des rhenohercynischen Falten- und {\"U}berschiebungsg{\"u}rtels, der MDKS und des saxothuringischen Beckens, sowie die an heute exhumierten Gesteine bestimmten metamorphen Maximalbedingungen k{\"o}nnen auf dieser Grundlage numerisch reproduziert werden. Eine Erweiterung der Modellierungstechnik auf dreidimensionale FE-Modelle dient der Ber{\"u}cksichtigung orogenparalleler Deformation, die im Randbereich von Kollisionszonen in effektivem Materialtransport resultieren kann; diese Prozesse sind u.a. als „tectonic escape" (Burke \& Seng{\"o}r 1986) oder „lateral extrusion" (Ratschbacher et al. 1991b) beschrieben worden. Unter der Annahme orthogonaler Konvergenz wird im 3D-Modell der Mantelsubduktionsansatz der 2D-Modelle zun{\"a}chst in orogenparalleler Richtung extrudiert (Randbereich des Kollisionsorogens). Im angrenzenden, hinteren Teil des Modells (laterales Vorland des Kollisionsorogens) ist die Modellbasis dagegen keiner Verschiebung oder Fixierung unterworfen. Die Modellr{\"a}nder unterliegen hier einer sogenannten „no-tilt"-Bedingung, die eine differentielle Horizontalverschiebung initial {\"u}bereinanderliegender Knoten verbietet. In einer Reihe von Parameterstudien werden das kinematische Muster, die r{\"a}umliche Verteilung der Deformation und die zeitlichen Variationen des oberfl{\"a}chlichen Spannungsfelds untersucht, die sich bei modifizierten Randbedingungen ergeben. Laterale Extrusion ist demnach im Randbereich von Kollisionsorogenen trotz unterschiedlichster Modellszenarien stets pr{\"a}sent. Da die Lateralbewegungen zeitgleich mit der Kollision einsetzen und im Laufe der weiteren konvergenten Krustenverk{\"u}rzung nur wenig beschleunigt werden, ist der von horizontalen Kr{\"a}ften ausgel{\"o}ste „tectonic escape" der dominierende Prozess, w{\"a}hrend gravitativ induzierte Bewegungen nur eine sekund{\"a}re Rolle spielen. Rigide Modellr{\"a}nder in Teilen des lateralen Vorlands modifizieren sowohl Umfang als auch Verteilung der Horizontalbewegungen, ihre Auswirkungen auf das Orogen selbst sind dagegen vergleichsweise gering. Variationen der Krustentemperaturen, der Konvergenzrate und der Unterkrustenrheologie beeinflussen dagegen sowohl die orogene Deformation als auch die des lateralen Vorlands. Unter der Annahme einer festen, isotropen Kopplung zwischen der Krustenbasis und dem bewegten lithosph{\"a}rischen Mantel werden Extrusionsraten simuliert, die 30\% der Konvergenzrate nicht {\"u}berschreiten. Bis zu 70\% k{\"o}nnen dagegen erreicht werden, wenn eine orogenparallele Beweglichkeit der Modellbasis gestattet wird. Die {\"u}berragende Bedeutung dieser basalen Randbedingung erlaubt eine Interpretation des mioz{\"a}nen lateralen Extrusionsereignisses in den Ostalpen (z.B. Ratschbacher et al. 1991a). Wenn im Bereich der heutigen Ostalpen zu Beginn der lateralen Extrusion noch kein orogene Topographie bestand (Frisch et al. 1998), fand laterale Extrusion zeitgleich mit bedeutender Krustenverdickung statt; dies spricht f{\"u}r eine Dominanz des von horizontalen Kr{\"a}ften induzierten Prozesses „tectonic escape" {\"u}ber gravitatives Kollabieren. In jedem Fall legt das in etwa ausgeglichene Verh{\"a}ltnis zwischen Plattenkonvergenz und lateraler Extrusion die Existenz eines basalen Entkopplungshorizonts nahe. Andere Faktoren, die zur Erkl{\"a}rung des Extrusionsereignisses herangezogen werden, z.B. die Indentation der S{\"u}dalpen oder ein extensives Regime im Bereich des Pannonischen Beckens, k{\"o}nnen das Deformationsmuster beeinflusst haben, die beobachteten Verschiebungsbetr{\"a}ge sind damit jedoch aus Sicht der Modellstudien nicht plausibel zu machen. Aufgrund ihres großen Maßstabs lassen sich die Verh{\"a}ltnisse bei der Kollision Indiens mit der Eurasischen Platte bislang nur ph{\"a}nomenologisch mit den Modellergebnissen vergleichen. Eine skalierte Fallstudie bleibt somit eine Herausforderung f{\"u}r zuk{\"u}nftige FE-Modelle.}, subject = {Subduktion}, language = {de} }