@phdthesis{Schaupp2022, author = {Schaupp, Thomas}, title = {Quantendynamik korrelierter Elektronen- und Kernbewegung}, doi = {10.25972/OPUS-23774}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237743}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen dieser Arbeit werden unterschiedliche Aspekte der korrelierten Elektronen-Kerndynamik, anhand verschiedener Modellsysteme untersucht. Dabei wird vor allem auf den Vergleich numerisch exakter und approximativer Methoden zur Beschreibung der Wellenpaketdynamik eingegangen, wobei bei letzterem das Augenmerk auf der Born-Oppenheimer (BO) N{\"a}herung liegt. Die verwendeten Modellsysteme erlauben es, die gekoppelte Elektronen-Kern-Dynamik exakt zu beschreiben. Die daraus gewonnenen Ergebnisse dienen als Referenz f{\"u}r den Vergleich mit den N{\"a}herungsmethoden. Im ersten Teil der Arbeit wird die Dynamik eines Wellenpakets in der Umgebung einer Konischen-Durchschneidung (CI) untersucht, wobei die Beschreibung des Wellenpakets quantenmechanisch und durch die klassische Mechanik im Phasenraum erfolgt. Im zweiten Teil wird die Wahrscheinlichkeitsflussdichte untersucht. Zuerst wird ein Fall konstruiert, in welchem die Bewegung im elektronischen Grundzustand stattfindet, sodass die Bedingungen der BO N{\"a}herung erf{\"u}llt sind. Dabei wird vor allem auf das Verschwinden der elektronischen Wahrscheinlichkeitsflussdichte innerhalb der BO N{\"a}herung eingegangen. Im weiteren Verlauf werden die Flussdichten in der Umgebung einer CI untersucht, wobei unterschiedliche Situationen modelliert werden. Im dritten Teil wird die Berechnung des elektronischen Impulserwartungswerts innerhalb der BO N{\"a}herung untersucht. Dieser verschwindet innerhalb der BO N{\"a}herung, wenn man diesen direkt berechnet (Geschwindigkeitsform), w{\"a}hrend man {\"u}ber das Ehrenfest Theorem (L{\"a}ngenform) sehr gute Werte erh{\"a}lt. Im vierten Teil wird eine neue Flussdichte, die Translationsflussdichte, vorgestellt. Diese ergibt sich aus der {\"U}berlegung, dass die Geschwindigkeitsform des Impulserwartungswerts durch die Wahrscheinlichkeitsflussdichte ausgedr{\"u}ckt werden kann. Demnach muss auch die L{\"a}ngenform einer Flussdichte entsprechen und man erh{\"a}lt die Translationsflussdichte.}, subject = {Quantenmechanik}, language = {de} } @phdthesis{Suess2021, author = {S{\"u}ß, Jasmin}, title = {Theoretische Untersuchungen an molekularen Aggregaten: 2D-Spektroskopie und Exzitonendynamik}, doi = {10.25972/OPUS-24713}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Diese Dissertation besch{\"a}ftigt sich mit der Exzitonendynamik molekularer Aggregate, die nach Mehrphotonen-Anregung auf ultrakurzer Zeitskala stattfindet. Hierbei liegt der Fokus auf der Charakterisierung der Exziton-Exziton-Annihilierung (EEA) mithilfe von zweidimensionaler optischer Spektroskopie f{\"u}nfter Ordnung. Dazu werden zwei verschiedene Modellsysteme implementiert: Das elektronische Homodimer und das elektronische Homotrimer-Modell, wobei Letzteres eine Erweiterung des Dimer-Modells darstellt. Die Kopplung des quantenmechanischen Systems an die Umgebung wird mithilfe des Quantum-Jump-Ansatzes umgesetzt. Besonderes Interesse kommt der Analyse des Signals f{\"u}nfter Ordnung in Abh{\"a}ngigkeit der Populationszeit T zu. Anhand des Dimer-Modells als kleinstm{\"o}gliches Aggregat lassen sich bereits gute Vorhersagen auch {\"u}ber das Verhalten gr{\"o}ßerer molekularer Aggregate treffen. Der Zerfall des oszillierenden Signals f{\"u}r lange Populationszeiten korreliert mit der EEA. Dies zeigt, dass die zweidimensionale optische Spektroskopie genutzt werden kann, um den Annihilierungsprozess zu charakterisieren. Innerhalb des Modells des Dimers wird weiterhin der Einfluss der Intraband-Relaxation untersucht. Zunehmende Intraband-Relaxation verhindert den Austausch zwischen den lokalen Zust{\"a}nden, der essentiell f{\"u}r den Annihilierungsprozess ist, und die EEA wird blockiert. Das elektronische Trimer-Modell erweitert das Dimer-Modell um eine Monomereinheit. Somit befinden sich die Exzitonen im Anschluss an die Anregung nicht mehr unvermeidlich nebeneinander. Es gibt somit eine Konfiguration, bei der sich die Exzitonen zun{\"a}chst zueinander bewegen m{\"u}ssen, bevor die Startbedingung des Annihilierungsprozesses gegeben ist. Dieser zus{\"a}tzliche Schritt wird auch Exzitonendiffusion genannt. Die Ergebnisse dieser Arbeit legen nahe, dass das erwartete Verhalten nur zu sehr kurzen Zeiten im Femtosekundenbereich auftritt und somit die Zeitskala der Exzitonendiffusion im Falle des Trimers nicht sichtbar wird. Es bedarf demnach eines gr{\"o}ßeren Modellsystems, bei dem sich der Effekt der zeitverz{\"o}gert eintretenden EEA deutlich in der Zerfallsdynamik manifestieren kann.}, subject = {Molekulardynamik}, language = {de} } @phdthesis{Wehner2018, author = {Wehner, Johannes}, title = {Wellenfunktionsbasierte Analyse zweidimensionaler Spektren: Wellenpaketbewegung in Dimeren und Quantendiffusionsdynamik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163555}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der st{\"o}rungstheoretischen Berechnung von zweidimensionalen Photonen-Echo-Spektren f{\"u}r das elektronische und vibronische Modell eines Homo- und Hetero-Dimers sowie f{\"u}r ein vibronisches Modell eines Monomers unter dem Einfluss einer System-Bad-Wechselwirkung. Bei der Analyse der Dimerspektren steht neben der Orientierungsmittelung der Polarisation dritter Ordnung der Unterschied zwischen elektronischen und vibronischen Spektren sowie der Vergleich der Spektren von Homo- und Hetero-Dimeren im Zentrum des Interesses. Bei der Analyse der Monomer-Spektren steht die Behandlung einer dissipativen Dynamik bzw. des vibrational-coolings innerhalb eines stochastischen Ansatzes im Vordergrund. Der erste Teil dieser Arbeit konzentriert sich auf die st{\"o}rungstheoretische Berechnung der Polarisation dritter Ordnung in Dimeren. Dabei werden alle Aspekte und Ergebnisse f{\"u}r verschiedene Geometrien der {\"U}bergangsdipolmomente analysiert und diskutiert. Die Berechnungen ber{\"u}cksichtigen dabei auch die zuf{\"a}llige Anordnung der Molek{\"u}le in der Probe. Die Zusammenh{\"a}nge zwischen den 2D-Spektren und den Eigenschaften der Monomereinheiten, die Abh{\"a}ngigkeit der Intensit{\"a}ten mancher Peaks von der zeitlichen Abfolge der Pulse sowie der Einfluss der elektronischen Kopplung und verschiedener {\"U}bergangsdipolmomente erm{\"o}glichen ein grundlegendes Verst{\"a}ndnis der elektronischen Photonen-Echo-Spektren. Im elektronischen Dimer wird der Hetero-Dimer-Charakter durch verschiedene Monomeranregungsenergien sowie unterschiedliche {\"U}bergangsdipolmomente der Monomereinheiten bestimmt. Der Einfluss dieser Gr{\"o}ßen auf die Photonen-Echo-Spektren kann durch die Kombination einer detaillierten analytischen Betrachtung und numerischen Rechnungen anschaulich nachvollzogen werden. In der vibronischen Betrachtungsweise zeigt sich, dass die Spektren deutlich an Komplexit{\"a}t gewinnen. Durch die Vibrationsfreiheitsgrade vervielfachen sich die m{\"o}glichen {\"U}berg{\"a}nge im System und damit die m{\"o}glichen Peakpositionen im Spektrum. Jeder Peak spaltet in eine Vibrationssubstruktur auf, die je nach ihrer energetischen Position mit anderen {\"u}berlagern kann. Der Vergleich zwischen Homo- und Hetero-Dimer-Spektren wird durch die Wahl verschiedener Vibrationsfrequenzen und unterschiedlicher Gleichgewichtsabst{\"a}nde entlang der Vibrationskoordinaten erweitert. Die Berechnung des Orientierungsmittels erfolgt mit zwei verschiedenen Ans{\"a}tzen. Zum einen wird das Mittel durch den numerischen sampling-Ansatz berechnet. Dabei werden Azimutal- und Polarwinkel in kleinen Winkelinkrementen abgetastet und f{\"u}r jede Kombination ein 2D-Spektrum berechnet. Die Einzelspektren werden anschließend gemittelt. Diese Methode erweist sich im Dimer als sehr effektiv. Zum anderen erlaubt die analytische Auswertung der Polarisation dritter Ordnung, das gemittelte Spektrum direkt in einer einzelnen Rechnung durch winkelgemittelte Gewichtungsfaktoren zu bestimmen. Bei der Berechnung der elektronischen 2D-Spektren ist diese Methode sehr leistungsf{\"a}hig, da alle Ausdr{\"u}cke analytisch bekannt sind. F{\"u}r vibronische Systeme ist dieser Ansatz ebenfalls sehr leistungsstark, ben{\"o}tigt aber eine einmalige aufwendige Analyse vor der Berechnung. Trotz der deutlich erh{\"o}hten Anzahl an Zustandsvektoren, die propagiert werden m{\"u}ssen, ist diese Methode circa zweimal schneller als die direkte Mittelung mit der sampling-Methode. Im zweiten Teil konzentriert sich die Arbeit auf die Beschreibung eines Monomers, das sich in einer dissipativen Umgebung befindet. Dabei wird auf die L{\"o}sung einer stochastischen Schr{\"o}dingergleichung zur{\"u}ckgegriffen. Speziell wird die sogenannte quantum-state-diffusion-Methode benutzt. Dabei werden nicht nur die Erwartungswerte f{\"u}r die Energie und den Ort, sondern auch die Polarisation dritter Ordnung - eine phasensensitive Gr{\"o}ße - bestimmt. In der theoretischen Fragestellung wird dabei, ausgehend von der von-Neumann Gleichung, die Zeitentwicklung der reduzierten Dichtematrix durch die Integration einer stochastischen zeitabh{\"a}ngigen Schr{\"o}dingergleichung reproduziert. In Rechnungen koppelt die Stochastik {\"u}ber die Erwartungswerte von Ort und Impuls die verschiedenen st{\"o}rungstheoretischen Korrekturen der Wellenfunktion miteinander. Die Spektren, die aus den numerischen Simulationen erhalten werden, spiegeln das dissipative Verhalten des Systems detailliert wider. Eine Analyse der Erwartungswerte von Ort und Energie zeigt, dass sich die einzelnen elektronischen Zust{\"a}nde wie ged{\"a}mpfte harmonische Oszillatoren verhalten und jeweils einen exponentiellen Zerfall abh{\"a}ngig von der Dissipationskonstante zeigen. Dieser Teil der Arbeit erweitert vorausgehende Untersuchungen, bei denen ein vereinfachter Ansatz zu Einsatz kam, der die korrelierte Stochastik nicht ber{\"u}cksichtigte.}, subject = {Molekulardynamik}, language = {de} } @phdthesis{Hader2017, author = {Hader, Kilian}, title = {Lokalisierungsdynamik unter Ber{\"u}cksichtigung von Molek{\"u}l-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146735}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gew{\"a}hlt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivit{\"a}t in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abh{\"a}ngende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abh{\"a}ngigkeit in beobachtbaren Gr{\"o}ßen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomeren{\"u}berschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabh{\"a}ngigkeit der Asymmetrien besteht nur f{\"u}r die CEP des zweiten Pulses φ₂, f{\"u}r welchen keine Begrenzungen f{\"u}r die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abh{\"a}ngigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. F{\"u}r alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der f{\"u}r zumindest eine der beiden Asymmetrien eine CEP-Abh{\"a}ngigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabh{\"a}ngig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In n{\"a}chsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der N{\"a}he einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht ver{\"o}ffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der "Multi-Configuration Time-Dependent Hartree"(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfl{\"a}che. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzust{\"a}nden ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung {\"a}ndert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische L{\"o}sungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden F{\"a}llen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden k{\"o}nnen. Aus den so erhaltenen Parametern ergibt sich f{\"u}r beide Systeme ein {\"a}hnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen k{\"o}nnen sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu ber{\"u}cksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zust{\"a}nde bedeutsam.}, subject = {Quantenmechanik}, language = {de} } @phdthesis{Kess2016, author = {Keß, Martin}, title = {Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Diese Arbeit befasst sich mit zeitaufgel{\"o}sten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zun{\"a}chst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zust{\"a}nden. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zust{\"a}nde beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zur{\"u}ckzuf{\"u}hren. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs l{\"a}sst sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabh{\"a}ngige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausf{\"u}hrlich charakterisiert. Damit dieser Prozess auftreten kann m{\"u}ssen mehrere Bedingungen erf{\"u}llt werden: Das Wellenpaket muss {\"u}ber die Dauer der Oszillationen ann{\"a}hernd {\"o}rtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verh{\"a}ltnis der Kopplung zum Energieabstand der Zust{\"a}nde. Deshalb muss an den station{\"a}ren Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen h{\"a}ngt außerdem von dem Populationsverh{\"a}ltnis und den Phasen der Komponenten des Wellenpakets in den beiden Zust{\"a}nden ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-N{\"a}herung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben koh{\"a}renter Propagation k{\"o}nnen Spr{\"u}nge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die St{\"a}rke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust koh{\"a}renter Phasen ohne Energie{\"a}nderung. Fallenzust{\"a}nde wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zust{\"a}nde charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erkl{\"a}rt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzust{\"a}nde besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzust{\"a}nde, da nur die Eigenfunktionen der Fallenzust{\"a}nde große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter f{\"u}hren zu {\"A}nderungen der relativen Peakintensit{\"a}ten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden st{\"o}rungstheoretisch {\"u}ber die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterf{\"o}rmigen Anordnung, die sich auf {\"U}berg{\"a}nge unter Mitwirkung der Fallenzust{\"a}nde zur{\"u}ckf{\"u}hren lassen. H{\"o}here System-Bad-Kopplungen f{\"u}hren aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzust{\"a}nden korrespondieren, bleichen schneller aus. H{\"o}here Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. L{\"a}ngere Zeiten f{\"u}hren zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entv{\"o}lkerung der h{\"o}her liegenden Zust{\"a}nde l{\"a}sst sich somit zeit- und energieaufgel{\"o}st betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen l{\"a}sst, obwohl die Zuordnung der Peaks im 2D-Spektrum zu {\"U}berg{\"a}ngen zwischen definierten Eigenzust{\"a}nden nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell k{\"o}nnen auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu {\"u}berpr{\"u}fen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abh{\"a}ngig von der St{\"a}rke der elektronischen Kopplung, eine sehr gute bis gute {\"U}bereinstimmung, was die Annahme eines schnellen ICs st{\"u}tzt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabh{\"a}ngige Schr{\"o}dingergleichung f{\"u}r ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gel{\"o}st und die Polarisation nicht-st{\"o}rungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zust{\"a}nde und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabh{\"a}ngig, ein Winkel zwischen den {\"U}bergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensit{\"a}t der Peaks im rein elektronischen Trimer wurde analytisch erl{\"a}utert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgepr{\"a}gte vibronische Struktur. Es wurde gezeigt, wie die Spektren f{\"u}r h{\"o}here Aggregationsgrade durch die h{\"o}here Dichte an vibronischen Zust{\"a}nden komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine st{\"a}rkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer f{\"u}hrt zu Spektren mit {\"u}berlappenden Peaks und einer zus{\"a}tzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abh{\"a}ngigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden m{\"o}gliche Ans{\"a}tze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen.}, subject = {Quantenmechanik}, language = {de} } @phdthesis{Falge2012, author = {Falge, Mirjam}, title = {Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molek{\"u}len und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. W{\"a}hrend bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-N{\"a}herung in der Quantenchemie h{\"a}ufig angenommen wird, voneinander trennen lassen.}, subject = {Nichtadiabatischer Prozess}, language = {de} }