@phdthesis{Schaebler2022, author = {Sch{\"a}bler, Stefan}, title = {Charakterisierung des circadianen Drosophila Metaboloms unter Zuhilfenahme massenspektrometrischer Methoden}, doi = {10.25972/OPUS-25190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251908}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die F{\"a}higkeit sich an die Rotation der Erde und den daraus resultierenden Tag- und Nacht-Rhythmus anzupassen, basiert auf einer komplexen Regulation verschiedener physiologischer Prozesse. Auf molekularer Ebene liegt diesen Prozessen eine Orchestration von Uhr-Genen zugrunde - auch als innere Uhr bezeichnet - die einen aktivierenden bzw. reprimierenden Einfluss auf die Expression einer Vielzahl weiterer Gene hat. Ausgehend von dieser Regulation lassen sich auf unterschiedlichsten Ebenen tageszeitabh{\"a}ngige, wiederkehrende Rhythmen beobachten. W{\"a}hrend diese wiederkehrenden Rhythmen auf einigen Ebenen bereits gut erforscht und beschrieben sind, gibt es weitere Ebenen wie den Metabolismus, {\"u}ber die das Wissen bisher noch begrenzt ist. So handelt es sich bei Drosophila beispielsweise um den Organismus, dessen innere Uhr auf molekularer Ebene wahrscheinlich mit am besten charakterisiert ist. Dennoch ist bisher nur wenig {\"u}ber Stoffklassen bekannt, deren Metabolismus durch die innere Uhr kontrolliert wird. Zwar konnte bereits gezeigt werden, dass sich eine gest{\"o}rte innere Uhr auf die Anlage der Energiespeicher auswirkt, inwiefern dies allerdings einen Einfluss auf dem intermedi{\"a}ren Stoffwechsel hat, blieb bisher weitgehend unerforscht. Auch die Frage, welche Metaboliten wiederkehrende, tageszeitabh{\"a}ngige Rhythmen aufweisen, wurde bisher nur f{\"u}r eine begrenzte Anzahl Metaboliten untersucht. Bei der hier durchgef{\"u}hrten Arbeit wurden deshalb zun{\"a}chst die globalen Metabolit-Profile von Fliegen mit einer auf molekularer Ebene gest{\"o}rten inneren Uhr (per01) mit Fliegen, die {\"u}ber eine funktionale Uhr verf{\"u}gen (CantonS), zu zwei Zeitpunkten verglichen. Um die Anzahl der zeitgleich untersuchten Gewebe und somit die Komplexit{\"a}t der Probe zu reduzieren, wurden hierf{\"u}r die K{\"o}pfe von den K{\"o}rpern der Fliegen getrennt und separat analysiert. Beide K{\"o}rperteile wurden sowohl auf kleine hydrophile als auch auf hydrophobe Metaboliten hin mittels UPLC-ESI-qTOF-MS untersucht. Die anschließend durchgef{\"u}hrte, statistische Analyse brachte hervor, dass sich Unterschiede zwischen den beiden Fliegenlinien besonders in den Spiegeln der essentiellen Aminos{\"a}uren, den Kynureninen, den Pterinaten sowie den Spiegeln der Glycero(phospho)lipiden und Fetts{\"a}ureester zeigten. Bei den Lipiden zeigte sich, dass die Auswirkungen weniger ausgepr{\"a}gt f{\"u}r die Anlage der Speicher- und Strukturlipide als f{\"u}r die Intermediate des Lipidabbaus, die Diacylglycerole (DAGs) sowie die Acylcarnitine (ACs), waren. Um zu best{\"a}tigen, dass die inneren Uhr tats{\"a}chlich einen regulatorischen Einfluss auf die ausgemachten Stoffwechselwege hat, wurden anschließend die Spiegel aller Mitglieder darauf hin untersucht, ob diese wiederkehrende, tageszeitabh{\"a}ngige Schwankungen aufweisen. Hierf{\"u}r wurden Proben alle zwei Stunden {\"u}ber drei aufeinanderfolgende Tage genommen und analysiert, bevor mittels JTK_CYCLE eine statistische Analyse der Daten durchgef{\"u}hrt und die Metaboliten herausgefiltert wurden, die ein rhythmisches Verhalten bei einer Periodenl{\"a}nge von 24h zeigten. Hierbei best{\"a}tigte sich, dass besonders die Mitglieder des intermedi{\"a}ren Lipidmetablismus hiervon betroffen waren. So konnten zwar auch f{\"u}r einige Aminos{\"a}uren robuste Rhythmen ausgemacht werden, besonders ausgepr{\"a}gt waren diese jedoch erneut bei den DAGs und den ACs. Die abschließende Untersuchung letzterer unter Freilaufbedingungen (DD) sowie in per01 brachte hervor, dass die ausgemachten Rhythmen unter diesen Bedingungen entweder nicht mehr detektiert werden konnten oder deutlich abgeschw{\"a}cht vorlagen. Lediglich zwei kurzkettige ACs zeigten auch unter DD-Bedingungen statistisch signifikante Rhythmen in ihren Spiegeln. Dies spricht daf{\"u}r, dass neben der Regulation durch die innere Uhr weitere Faktoren, wie beispielsweise das Licht, eine entscheidende Rolle zu spielen scheinen.}, subject = {Drosophila}, language = {de} } @phdthesis{Cecil2012, author = {Cecil, Alexander [geb. Schmid]}, title = {Metabolische Netzwerkanalysen f{\"u}r den Weg von xenobiotischen zu vertr{\"a}glichen antibiotischen Substanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Durch das Auftreten neuer St{\"a}mme resistenter Krankheitserreger ist die Suche nach neuartigen Wirkstoffen gegen diese, sich st{\"a}ndig weiter ausbreitende Bedrohung, dringend notwendig. Der interdisziplin{\"a}re Sonderforschungsbereich 630 der Universit{\"a}t W{\"u}rzburg stellt sich dieser Aufgabe, indem hier neuartige Xenobiotika synthetisiert und auf ihre Wirksamkeit getestet werden. Die hier vorgelegte Dissertation f{\"u}gt sich hierbei nahtlos in die verschiedenen Fachbereiche des SFB630 ein: Sie stellt eine Schnittstelle zwischen Synthese und Analyse der Effekte der im Rahmen des SFB630 synthetisierten Isochinolinalkaloid-Derivaten. Mit den hier angewandten bioinformatischen Methoden wurden zun{\"a}chst die wichtigsten Stoffwechselwege von S. epidermidis R62A, S. aureus USA300 und menschlicher Zellen in sogenannten metabolischen Netzwerkmodellen nachgestellt. Basierend auf diesen Modellen konnten Enzymaktivit{\"a}ten f{\"u}r verschiedene Szenarien an zugesetzten Xenobiotika berechnet werden. Die hierf{\"u}r ben{\"o}tigten Daten wurden direkt aus Genexpressionsanalysen gewonnen. Die Validierung dieser Methode erfolgte durch Metabolommessungen. Hierf{\"u}r wurde S. aureus USA300 mit verschiedenen Konzentrationen von IQ-143 behandelt und gem{\"a}ß dem in dieser Dissertation vorgelegten Ernteprotokoll aufgearbeitet. Die Ergebnisse hieraus lassen darauf schließen, dass IQ-143 starke Effekte auf den Komplex 1 der Atmungskette aus{\"u}bt - diese Resultate decken sich mit denen der metabolischen Netzwerkanalyse. F{\"u}r den Wirkstoff IQ-238 ergaben sich trotz der strukturellen {\"A}hnlichkeiten zu IQ-143 deutlich verschiedene Wirkeffekte: Dieser Stoff verursacht einen direkten Abfall der Enzymaktivit{\"a}ten in der Glykolyse. Dadurch konnte eine unspezifische Toxizit{\"a}t dieser Stoffe basierend auf ihrer chemischen Struktur ausgeschlossen werden. Weiterhin konnten die bereits f{\"u}r IQ-143 und IQ-238 auf Bakterien angewandten Methoden erfolgreich zur Modellierung der Effekte von Methylenblau auf verschiedene resistente St{\"a}mme von P. falciparum 3D7 angewandt werden. Dadurch konnte gezeigt werden, dass Methylenblau in einer Kombination mit anderen Pr{\"a}paraten gegen diesen Parasiten zum einen die Wirkung des Prim{\"a}rpr{\"a}parates verst{\"a}rkt, zum anderen aber auch in gewissem Maße vorhandene Resistenzen gegen das Prim{\"a}rpr{\"a}parat zu verringern vermag. Somit konnte durch die vorgelegte Arbeit eine Pipeline zur Identifizierung der metabolischen Effekte verschiedener Wirkstoffe auf unterschiedliche Krankheitserreger erstellt werden. Diese Pipeline kann jederzeit auf andere Organismen ausgeweitet werden und stellt somit einen wichtigen Ansatz um Netzwerkeffekte verschiedener, potentieller Medikamente aufzukl{\"a}ren.}, subject = {Stoffwechsel}, language = {de} } @phdthesis{Rikanovic2011, author = {Rikanovic, Carina}, title = {Metabolomanalytik antiinfektiv wirkender Isochinolinalkaloide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56183}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die zunehmende Entstehung von Resistenzen macht die Entwicklung neuer potenter Wirkstoffe zur Therapie von Infektionskrankheiten immer wichtiger. Dieser Aufgabe stellt sich auch der interdisziplin{\"a}r aufgebaute SFB 630, in den sich die vorliegende Arbeit eingliedert. Innerhalb des SFBs wurden Isochinolinalkaloid-Derivate (IQs) synthetisiert, die aktiv gegen verschiedene Mikroorganismen sind. Bioinformatische Modellierungen bilden die f{\"u}r den jeweiligen Mikroorganismus spezifischen Stoffwechselwege ab. In Netzwerkanalysen k{\"o}nnen {\"A}nderungen metabolischer Fl{\"u}sse durch pharmakologisch aktive Substanzen vorhergesagt werden. Gemeinsam mit bioinformatischen Modellen liefern die Metabolommessungen Hinweise auf m{\"o}gliche Wirkmechanismen. Im Rahmen der vorliegenden Arbeit wurden verschiedene analytische Methoden etabliert, um antiinfektive Wirkungen dieser verheißungsvollen Leitstrukturen auf das Metabolom verschiedener Mikroorganismen zu untersuchen. Die aus den Metabolommessungen erhaltenen Daten fließen in diese Modelle ein und tragen zu deren Optimierung bei. Die Mikroorganismen wurden f{\"u}r die Metabolomanalysen mit aktiven IQs (f{\"u}r S. aureus und C. albicans GB-AP-143, f{\"u}r L. major GB-AP-304) inkubiert. Bei C. albicans erfolgte die Probennahme zu unterschiedlichen Zeitpunkten (lag-, log-, station{\"a}re Phase), um auch die Zeitabh{\"a}ngigkeit der Effekte zu untersuchen. Zus{\"a}tzlich dienten bei C. albicans als Kontrollen neben parallel angesetzten Zellkulturen ohne Inhibitor, auch Zellkulturen, denen das L{\"o}sungsmittel DMSO zugegeben wurde. Es wurden Extraktionsmethoden f{\"u}r die betreffenden Metabolite der hier untersuchten Mikroorganismen (S. aureus, C. albicans, L. major) etabliert. Dabei lag der Fokus auf polaren Metaboliten, da bioinformatische Modellierungen f{\"u}r die Effekte der IQs {\"A}nderungen vor allem im Purin- und Pyrimidinstoffwechsel der Mikroorganismen vorhersagten. Zur Analyse des Nukleotidstoffwechsels wurde eine ionenpaarchromatographische HPLC-Methode entwickelt und optimiert. Mit dieser Methode konnten Nicotinamidderivate und Nukleotide des Purin- und Pyrimidinstoffwechsels in Zellextrakten von S. aureus, C. albicans und L. major quantifiziert werden. F{\"u}r eine Analyse des Wirkmechanismus von GB-AP-143 wurde die Zusammensetzung des Metaboloms von C. albicans mittels einer GC/MS-Methode bestimmt. Nach einer Derivatisierung des Extrakts mit Methoxyamin-HCl und MSTFA konnten in einem Lauf zugleich Target- und Fingerprintanalytik durchgef{\"u}hrt werden. Die Auswertung der Targetanalytik fand unter Anwendung der NIST-Datenbank und Vermessung von Standards statt. Hierbei konnten vor allem Aminos{\"a}uren quantitativ erfasst werden. Der Fingerprint wurde durch Einsatz multivariater statistischer Verfahren ausgewertet. Die Daten f{\"u}r die mit GB AP 143 behandelten S. aureus und die mit GB AP 304 behandelten L. major-Promastigoten liefern Hinweise auf eine Wirkung der IQs auf den Komplex-I der mitochondrialen Atmungskette. F{\"u}r die Behandlung der C. albicans-Kulturen mit GB-AP-143 konnten komplexe {\"A}nderungen im Nukleotid- und Aminos{\"a}urestoffwechsel gemessen werden. So beeinflusste bereits der Zeitpunkt der Probennahme (lag-, log- oder station{\"a}re Wachstumsphase) die Zusammensetzung des Metaboloms und auch das L{\"o}sungsmittel, das f{\"u}r die IQs verwendet wurde, verursachte komplexe {\"A}nderungen im Metabolom von C. albicans. Zus{\"a}tzlich wurden Nukleotid- und Aminos{\"a}urekonzentrationen Fluconazol-resistenter C. albicans-Mutanten (TAC, UPC und MRR) untersucht. Im Nukleotidstoffwechsel waren sowohl Konzentrationssteigerungen als auch ein Absinken der Konzentrationen im Vergleich zum Wildtyp zu verzeichnen. Der Aminos{\"a}urestoffwechsel zeigte insgesamt einen verminderten Gehalt an Aminos{\"a}uren der Mutanten gegen{\"u}ber dem Wildtyp. Da GB-AP-143 auch Aktivit{\"a}t gegen diese Mutanten zeigte, wurde exemplarisch die MRR-Mutante mit GB-AP-143 inkubiert, um zu untersuchen, ob die durch GB-AP-143 hervorgerufenen {\"A}nderungen im Nukleotid- und Aminos{\"a}urestoffwechsel {\"a}hnlich zu denen des Wildtyps sind. Es konnten im Nukleotidstoffwechsel gegenl{\"a}ufige Effekte f{\"u}r die Inkubation von GB-AP-143 des Wildtyps und der Mutante verzeichnet werden. Die Daten aus den HPLC/UV- und GC/MS-Messungen werden von der Bioinformatik zur Optimierung der verwendeten Modelle genutzt, um auf diese Weise die Wirkmechanismen der IQs besser modellieren zu k{\"o}nnen. Da das Cytochrom-P-450-Enzymsystem am Metabolismus von etwa 95 \% aller Arzneistoffe beteiligt ist, wurden die Effekte ausgew{\"a}hlter IQs auf die sechs wichtigsten arzneistoffmetabolisierenden Enzyme (CYP1A2, 2C8, 2C9, 2C19, 2D6 und 3A4) mit Hilfe eines bereits etablierten CYP-Assays analysiert und n{\"a}her charakterisiert. Im CYP-Assay zeigte sich f{\"u}r drei IQs eine CYP2D6-Hemmung. Die ausgepr{\"a}gte CYP2D6-selektive Hemmung von GB-AP-110 ergab einen IC50-Wert von nur 109 nM. Die Charakterisierung der Hemmung ergab einen reversiblen, kompetitiven Inhibitionsmechanismus.}, subject = {Metabolom}, language = {de} } @phdthesis{Wagner2008, author = {Wagner, Silvia}, title = {Identifizierung von Biomarkern mittels LC-MS-basiertem Metabonomics - Merkapturs{\"a}uren als Indikatoren f{\"u}r die Bildung toxischer Intermediate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35760}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Metabonomics bildet das Ende der Omics-Kaskade und stellt eine top-down-Strategie zur Erfassung und Interpretation des Metaboloms, d. h. der Gesamtheit aller niedermolekularen Metaboliten in einem intakten Organismus, dar. Ziel der Technik ist es, mittels geeigneter ungerichteter Screeningverfahren in nicht-invasiv zu gewinnenden biologischen Proben wie Urin oder Blut charakteristische Metabolitenprofile zu bestimmen. Im Kontext des Metabonomics wurde in Anlehnung an den Geno- bzw. Ph{\"a}notyp hierf{\"u}r der Begriff „Metabotyp" gepr{\"a}gt. Durch biostatistische Methoden, die auf Mustererkennung (pattern recognition) basieren, k{\"o}nnen Signaturen gegen{\"u}bergestellt und auf diesem Weg gruppenspezifische Metaboliten, d. h. Biomarker bzw. Metabolitenmuster, extrahiert werden. Metabonomics kann folglich als Fusion klassischer bioanalytischer und biostatistischer Verfahren aufgefasst werden. Seit der Einf{\"u}hrung im Jahr 1999 hat sich das Konzept des Metabonomics in mehrere Richtungen weiterentwickelt. So gab es Bestrebungen, die Technik, die urspr{\"u}nglich zur Pr{\"a}diktion von toxischen Effekten bei der Arzneistoffentwicklung etabliert wurde, auf Fragestellungen zu {\"u}bertragen, die den Menschen im Mittelpunkt haben. Neben pr{\"a}klinischen Anwendungen verfolgt man mit Metabonomics zunehmend das Ziel, einer personalisierten Medizin und Ern{\"a}hrung einen Schritt n{\"a}her zu kommen. Da sich die urspr{\"u}nglich eingesetzte NMR-Technik als zu unempfindlich und die resultierenden Metabolitenprofile als zu anf{\"a}llig gegen{\"u}ber biologischen und analytischen Einflussgr{\"o}ßen (Confoundern) erwiesen haben, wurde parallel auf sensitivere Verfahren wie die Massenspektrometrie gesetzt. Insbesondere die Kopplung mit der Hochdruckfl{\"u}ssigchromatographie erwies sich hierbei f{\"u}r das Metabolitenscreening als geeignet. Schnell wurde allerdings klar, dass aus den klassischen full scan/TOF-Methoden Datens{\"a}tze resultierten, die h{\"a}ufig zu komplex waren, um mit nachgeschalteten chemometrischen Verfahren die „Spreu vom Weizen trennen" zu k{\"o}nnen. Da sich Metabolitendatenbanken bisher noch im Aufbau befinden, ist die Identifizierung der Marker mit zus{\"a}tzlichen Schwierigkeiten verbunden und bedarf aufw{\"a}ndiger analytischer Verfahren. Eine Strategie stellt daher die Beschr{\"a}nkung auf ein Metabolitensubset dar. Indem man sich auf Metabolitenklassen fokussiert, die einen Bezug zum untersuchten Mechanismus haben, k{\"o}nnen die Erfolgsaussichten bei der Identifizierung charakteristischer Biomarker deutlich erh{\"o}ht werden. Aufgrund zahlreicher exogener und endogener Faktoren (Arzneistoffe, Industriechemikalien, Nahrungsbestandteile, Tabakrauchbestandteile, Produkte der Lipidperoxidation etc.) ist der menschliche Organismus stets einer Vielzahl an elektrophilen Verbindungen ausgesetzt. Oxidative Sch{\"a}digungen an Strukturen wie der DNA, Proteinen und Lipiden werden mit einer Reihe von Krankheitsbildern in Zusammenhang gebracht, darunter Parkinson, Alzheimer, Krebs und Volkskrankheiten wie Arteriosklerose, Allergien und koronare Herzerkrankungen. Mit dem Glutathionsystem verf{\"u}gt der K{\"o}rper {\"u}ber einen wirksamen Detoxifizierungsmechanismus. Das Tripeptid Glutathion reagiert als Nukleophil mit den exogen oder endogen gebildeten elektrophilen Intermediaten. Endprodukte sind Merkapturs{\"a}uren (N-Acetyl-L-Cystein-Addukte) bzw. deren Sulfoxide, die in erster Linie mit dem Urin ausgeschieden werden. Folglich besteht zwischen diesen Merkapturs{\"a}urederivaten und der elektrophilen Belastung eines Organismus ein direkter Zusammenhang. Vor diesem Hintergrund war es das Ziel der Arbeit, einen nicht-invasiven Metabonomicsansatz zur Anwendung am Menschen zu entwickeln. Durch die Fokussierung des Metabolitenscreenings auf die Effekt-, Dosis- und Suszeptibilit{\"a}tsmarkerklasse der Merkapturs{\"a}uren sollten hierbei die Erfolgsaussichten im Hinblick auf die Identifizierung potentieller Biomarker f{\"u}r diverse toxikologische sowie medizinische Endpunkte erh{\"o}ht werden.}, subject = {Metabolom}, language = {de} }