@phdthesis{Karg2006, author = {Karg, Kathrin}, title = {Analyse biologisch aktiver, oxidierter Lipide in Pflanzen und Menschen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Durch freie, radikalkatalysierte Oxidation von Linolens{\"a}ure k{\"o}nnen in vitro und in vivo meh-rere Klassen von Phytoprostanen gebildet werden. Im Rahmen der vorliegenden Arbeit wur-den Phytoprostane in Pflanzenmaterial (Bl{\"a}ttern, Bl{\"u}tenpollen), Speise{\"o}len sowie in mensch-lichen K{\"o}rperfl{\"u}ssigkeiten (Blut und Urinproben) untersucht. Zus{\"a}tzlich wurden neue Metho-den entwickelt, um Phytohormone sowie verschiedene Metabolite des pflanzlichen Prim{\"a}r- und Sekund{\"a}rstoffwechsels zusammen mit einer gemeinsamen Aufarbeitung erfassen und bestimmen zu k{\"o}nnen. Bl{\"u}tenpollen enthalten mehrere mmol/g an Phytoprostanen, darunter PPA1/PPB1, PPE1 und PPF1. Physiologisch relevant sind jedoch nur die Mengen, die sich nach Extraktion in einem w{\"a}ssrigen Puffer wiederfinden lassen. Deshalb wurden hier erstmals w{\"a}ssrige Extrakte von Birkenpollen untersucht. In diesen befanden sich durchschnittlich 60 nmol PPE1 und 10 nmol PPF1 pro g extrahiertem Pollen. Pflanzen{\"o}le enthalten a-Linolens{\"a}ure bis zu einem Gewichtsanteil von 56 \% (m/m). In Spei-se{\"o}len aus ausgesuchten Pflanzenarten (Lein{\"o}l, Soja{\"o}l, Oliven{\"o}l), Walnuss{\"o}l, Traubenkern{\"o}l) und parenteraler Nahrung (Intralipid) wurden die Phytoprostanklassen A1, B1, D1, E1, F1 und deoxy-J1 nachgewiesen und quantifiziert. In frischen {\"O}len wurden große Mengen an Phy-toprostanen (0,4 - 101 mg/g {\"O}l) gefunden, welche teilweise frei und teilweise verestert vorla-gen. Der absolute Phytoprostangehalt der {\"O}le nahm in folgender Reihe ab: Lein{\"o}l » Soja{\"o}l > Oliven{\"o}l > Walnuss{\"o}l > Raps{\"o}l >> Traubenkern{\"o}l. (a-Tocopherol). In allen untersuchten {\"O}-len dominierten entweder PPE1 oder PPF1 als h{\"a}ufigste Phytoprostanklasse. PPA1 und PPB1 waren lediglich als untergeordnete Bestandteile enthalten. PPD1 und dPPJ1 konnten nur in sehr geringen Mengen gefunden werden. Wenn ein {\"O}l bei l{\"a}ngerer Lagerung autoxidiert, k{\"o}nnen die Gehalte an oxidierten Fetts{\"a}uren um ein Vielfaches ansteigen. Es konnte gezeigt werden, dass bei der Autoxidation von Spei-se{\"o}len weitere Phytoprostane entstehen und die Konzentrationen von PPE1 und PPF1 im {\"O}l bis auf das 10-fache ansteigen k{\"o}nnen. Weiterhin wurde dabei die Bildung von detektierbaren Mengen dPPJ1 nachgewiesen. Die Kinetik der Phytoprostanbildung folgte dem f{\"u}r andere Autoxidationsprodukte typischem zeitlichen Verlauf und erst nach {\"U}berschreiten einer Induk-tionsperiode traten vermehrt Phytoprostane auf. Im menschlichen Verdauungstrakt sind Phytoprostane chemisch stabil. Allerdings k{\"o}nnen im sauren Milieu des Magens (pH 0-2) Dehydratisierungen auftreten: Nach Inkubation von PPE1 in 0,1 M HCl waren nach 3 h noch 97 \% intakt, wohingegen 3 \% nichtenzymatisch zu PPA1 konvertiert waren. Unter den gleichen Bedingungen wurden 19 \% der inkubierten PGD1 zu dPGJ1 dehydratisiert. In den Pflanzen{\"o}len veresterte PPF1 wurden mit Schweinepankreas-Lipase innerhalb 1 h zu 44 bis 100 \% hydrolysiert. Raffinierte Speise{\"o}le, welche fast ausschließlich aus Triacylglyce-riden zusammengesetzt sind, wurden die veresterten PPF1 sogar zu fast 100 \% hydrolysiert. Weiterhin konnte erstmals gezeigt werden, dass Phytoprostane nach oraler Aufnahme resor-biert werden k{\"o}nnen und anschließend mit dem Urin ausgeschieden werden. Nach Verzehr von Pflanzen{\"o}len (Soja{\"o}l, Oliven{\"o}l, Traubenkern{\"o}l) wurden die Spiegel von PPF1 in Blut und Urin bestimmt. Dabei zeigte sich eine deutliche Korrelation zwischen dem Phytoprostangehalt der {\"O}le und dem Gehalt in den Blut- und Urinproben: Nach Konsum von Oliven- oder Soja{\"o}l konnten innerhalb von 24 h PPF1 in Blut und Urin wiedergefunden werden, wohingegen der Konsum von Traubenkern{\"o}l in den untersuchten Zeitr{\"a}umen weder im Blut noch im Urin zu detektierbaren PPF1-Mengen f{\"u}hrte. Im Blut lag PPF1 verestert vor: Im Serum von Oliven{\"o}l-Konsumenten konnten durchschnittlich 1,22 nmol/l PPF1 gefunden werden. Das Serum eines Soja{\"o}l-Konsumenten enthielt 0,97 nmol PPF1/l. Die Ausscheidung von unmetabolisierten PPF1 mit dem Urin erfolgte fast vollst{\"a}ndig innerhalb der ersten 8 h nach dem Konsum der {\"O}le, 8 bis 24 h danach konnten im Urin nur noch sehr geringe Mengen PPF1 detektiert wer-den. In den Urinproben der Konsumenten von Oliven{\"o}l oder Soja{\"o}l konnten nach 0-4 h durch-schnittlich 2,02 bzw. 0,43 pmol PPF1/mg Kreatinin und nach 4-8 h 1,39 bzw. 0,68 pmol PPF1/mg Kreatinin gefunden werden. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, welche die simultane Bestimmung von Phytohormonen, Oxylipinen und Fetts{\"a}uren erm{\"o}glicht. Weiterhin wurden Methoden zur Metabolit-Analytik entwickelt, mit welchen Konzentrationsunterschiede zwischen zwei Pro-ben direkt verglichen werden k{\"o}nnen. Zur Markierung von der Carboxylgruppe von Oxylipinen, Phytohormonen und Aminos{\"a}uren mit 18O-Sauerstoff wurden allgemein anwendbare Methoden entwickelt. Die [18O]2-markierten Verbindungen erwiesen sich als stabil und eigneten sich als interner Standard in der GC-MS und HPLC-MS Analytik.}, subject = {Prostaglandine}, language = {de} } @phdthesis{Krischke2004, author = {Krischke, Markus}, title = {Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Phytoprostane (PP) k{\"o}nnen nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolens{\"a}ure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass {\"u}ber den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden k{\"o}nnen, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolens{\"a}ure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verst{\"a}rkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen K{\"a}lteschock. Dar{\"u}ber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind.}, language = {de} } @phdthesis{Thoma2003, author = {Thoma, Ingeborg}, title = {Cyclopentenon-Phytoprostane als Induktoren von pflanzlichen Abwehrreaktionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Lipidperoxidation kann entweder durch Lipoxygenasen oder reaktive Sauerstoffspezies ausgel{\"o}st werden. Enzymatische Oxidation von alpha-Linolens{\"a}ure kann zur Biosynthese von zyklischen Oxylipinen vom Typ der Jasmonate f{\"u}hren, wohingegen durch freie Radikal-katalysierte Oxidation von alpha-Linolens{\"a}ure mehrerere Klassen zyklischer Oxylipine, den Phytoprostanen entstehen k{\"o}nnen. Eine dieser Phytoprostanklassen, Phytoprostane E1 (PPE1), kommen ubiquit{\"a}r in Pflanzen vor. In der vorliegenden Arbeit wird gezeigt, dass PPE1 in planta in neuartige Cyclopentenon-Phytoprostane, die PPA1 und PPB1 umgewandelt werden. Eine gesteigerte Bildung von PPE1, PPA1 und PPB1 wurde sowohl nach Peroxid-Behandlung von Tabak-Zellkulturen als auch nach Behandlung von Tomatenpflanzen mit dem nekrotrophen Pilz Botrytis cinerea beobachtet. Dar{\"u}berhinaus besitzen PPA1 und PPB1 biologische Wirkung. Sie stimulierten beispielsweise die Bildung von Phytoalexinen in mehreren Zellkulturen. Diese Daten implizieren, dass die Bildung von Phytoprostanen eine Folge von oxidativem Stress in Pflanzen ist und dass Phytoprostane pflanzliche Abwehrmechanismen induzieren k{\"o}nnen.}, subject = {Pflanzen}, language = {de} }