@phdthesis{Froelich2012, author = {Fr{\"o}lich, Nadine}, title = {Analyse der µ-Opiatrezeptoraktivierung und Signaltransduktion in lebenden Zellen mittels FRET-Mikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der Fluoreszenz-Resonanz-Energie-Transfer ist ein Ph{\"a}nomen, welches erstmals 1948 von Theodor F{\"o}rster beschrieben wurde. Mit der Entwicklung von Fluoreszenzproteinen konnten in Kombination mit Mikroskopietechniken Einblicke in zellbiologische Vorg{\"a}nge gewonnen werden, die durch biochemische oder physiologische Experimente nicht m{\"o}glich sind. Dabei spielt die hohe zeitliche und r{\"a}umliche Aufl{\"o}sung eine wichtige Rolle. Auf dem Forschungsgebiet der GPCR, welche die gr{\"o}ßte Gruppe von Membranproteinen bei den S{\"a}ugetieren darstellen, wurden insbesondere Erkenntnisse {\"u}ber Konformations{\"a}nderungen der Rezeptoren, die Kinetik der Rezeptoraktivierung und die Interaktion mit intrazellul{\"a}ren Signalproteinen gewonnen. Der µ-Opioidrezeptor geh{\"o}rt zur Familie der GPCR und stellt aufgrund seiner analgetischen Wirkungen eine wichtige pharmakologische Zielstruktur dar. Das Ziel dieser Arbeit war sowohl den Rezeptor als auch seine Signalwege mittels FRET-Mikroskopie zu untersuchen. Zun{\"a}chst sollte ein intramolekularer FRET-Sensor des µ-Opioidrezeptors entwickelt werden, dazu wurden basierend auf den Kenntnissen {\"u}ber die Terti{\"a}rstruktur und dem Aufbau bereits bekannter GPCR-Sensoren verschiedene Rezeptorkonstrukte kloniert. Bei den Konstrukten wurden entweder zwei Fluoreszenzproteine oder ein Fluoreszenzprotein und ein Fluorophor-bindendes Tetracysteinmotiv kombiniert. Auch die Positionen der eingef{\"u}gten Sequenzen wurden in den intrazellul{\"a}ren Dom{\"a}nen variiert, da der Rezeptor auf die Modifikationen mit beeintr{\"a}chtigter Membranlokalisation reagierte. Durch die Optimierung wurden Rezeptoren konstruiert, die an der Zellmembran lokalisiert waren. Jedoch zeigte keines der Rezeptorkonstrukte Funktionalit{\"a}t im Hinblick auf die Rezeptoraktivierung. Im zweiten Teil wurden die pharmakologischen Effekte der Metabolite von Morphin am humanen µ-Opioidrezeptor systematisch analysiert. Dazu wurde die F{\"a}higkeit der Metabolite, Gi-Proteine zu aktivieren und β-Arrestin2 zu rekrutieren, mittels FRET-basierter Messungen an lebenden Zellen untersucht. Außerdem wurde die Affinit{\"a}t der Metabolite zum humanen µ Opioidrezeptor anhand der Verdr{\"a}ngung eines radioaktiven Liganden analysiert. Meine Experimente identifizierten eine Gruppe mit stark agonistischen und eine mit schwach agonistischen Eigenschaften. Die starken Partialagonisten aktivieren den Rezeptor bereits bei nanomolaren Konzentrationen, w{\"a}hrend die schwachen Metabolite den Rezeptor erst bei Konzentrationen im mikromolaren Bereich aktivieren. Die Metabolite Normorphin, Morphin-6-Glucuronid und 6-Acetylmorphin zeigen geringere Potenz als Morphin bei der Gi-Aktivierung aber {\"u}berraschenderweise h{\"o}here Potenz und Effizienz f{\"u}r die β-Arrestin-Rekrutierung. Dies deutet auf eine bevorzugte Aktivierung von β-Arrestin2 hin. Die aus diesen Studien gewonnenen Ergebnisse liefern Hinweise darauf, welche Metabolite bei der Signalverarbeitung am µ Opioidrezeptor in vivo beteiligt sind.}, subject = {Opiatrezeptor}, language = {de} }