@phdthesis{vanOorschot2012, author = {van Oorschot, Michaela}, title = {Untersuchungen zur Aufnahme und zum Metabolismus von Fluor-18-markierten und von radiojodierten Fetts{\"a}uren in prim{\"a}r humanen Prostatakarzinomzelllinien und in einem experimentellen Modell eines humanen Prostatakarzinoms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85295}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Prostatakarzinom ist der h{\"a}ufigste b{\"o}sartige Tumor des Mannes in den westlichen Industriel{\"a}ndern und die zweith{\"a}ufigste tumorassoziierte Todesursache bei M{\"a}nnern weltweit. F{\"u}r seine Diagnostik ist die Positronenemissionstomographie (PET) klinisch ein zunehmend wichtiges nicht-invasives bildgebendes Verfahren. Dennoch gibt es gegenw{\"a}rtig noch kein geeignetes Radiopharmakon f{\"u}r die klinische Routineuntersuchung und die Charakterisierung des Prostatakarzinoms mit der PET. In dieser Arbeit wurden die Fetts{\"a}uren [18F]Fluorthiapalmitat (FTP) und 13-(4-[124/131I]Iodphenyl)-3-(p-phenylen)tridekans{\"a}ure (PHIPA) hinsichtlich ihrer Eignung als Radiotracer f{\"u}r die PET zum Nachweis des Prostatakarzinoms in vitro und [18F]Fluorthiapalmitat auch in vivo untersucht. Methode: F{\"u}r die Zellversuche wurden zwei hormonabh{\"a}ngige Zelllinien, LNCap und 22Rv1, und zwei hormonunabh{\"a}ngige Zelllinien DU145 und PC-3 verwendet. Nach Inkubation mit dem radioaktiven Tracer wurde die H{\"o}he der Aufnahme im zeitlichen Verlauf mit Hilfe einer gamma-Kamera gemessen, sowie Untersuchungen zum Mechanismus der Aufnahme in die Zellen durchgef{\"u}hrt. In einem zweiten Schritt wurde die Aufnahme von [18F]FTP in ein heterotop implantiertes Prostatakarzinom in CD1-nu/nu-Nacktm{\"a}usen in vivo am Kleintier-PET bestimmt. Ergebnisse: Es zeigt sich sowohl f{\"u}r [18F]FTP als auch f{\"u}r [124/131I]PHIPA eine zeitabh{\"a}ngige Aufnahme in die Prostatakarzinomzellen mit Erreichen eines Plateaus. Dieses wird von der fluorierten Fetts{\"a}ure [18F]FTP schneller erreicht als von der jodierten Fetts{\"a}ure [124/131I]PHIPA. Das Plateau der Aufnahme liegt f{\"u}r [18F]FTP signifikant h{\"o}her als f{\"u}r [124/131I]PHIPA. Desgleichen ist die maximal erreichte Aufnahme in die beiden hormonabh{\"a}ngigen Zelllinien LNCaP und 22Rv1 h{\"o}her liegt, als in die hormonunabh{\"a}ngigen Zelllinien DU125 und PC-3. Im Rahmen von kompetitiven Inhibitorexperimenten mit Etomoxir konnte gezeigt werden, dass die Carnitin-Palmitoyltransferase einen wichtigen Aufnahmemechanismus f{\"u}r den Transport von [18F]FTP in die Zellen darstellt. Die Aufnahme von [124/131I]PHIPA in die Prostatakarzinomzellen wird durch Etomoxir nicht beeinflusst. Desgleichen l{\"a}sst sich die Aufnahme sowohl von [18F]FTP als auch von [124/131I]PHIPA weder durch Koinkubation mit Angiotensin noch mit AICAR hemmen. Die Kleintier-PET-Untersuchungen zeigten eine relativ geringe Aufnahme von [18F]FTP in die Tumoren in vivo im Vergleich zur Akkumulation in Tumorzellen in vitro in der Zellkultur. Die Abgrenzung des Tumors mittels [18F]FTP-PET war zwar m{\"o}glich, jedoch insgesamt noch nicht zufriedenstellend. Die Diskrepanz zwischen Daten aus Zellexperimenten in vitro und Ergebnissen aus tierexperimentellen Untersuchungen in vivo am Kleintier-PET kann noch nicht erkl{\"a}rt werden. Schlussfolgerung: Insgesamt legen die positiven Ergebnisse der in vitro Experimente mit [18F]FTP und [124/131I]PHIPA einen Grundstein f{\"u}r fortf{\"u}hrende in vivo Bewertungen dieser Radiopharmaka mit dem Ziel, das Potential als m{\"o}gliches Radiopharmakon zur Darstellung des Prostatakarzinoms abschließend kl{\"a}ren zu k{\"o}nnen.}, subject = {Positronen-Emissions-Tomographie}, language = {de} }