@phdthesis{Laubach2014, author = {Laubach, Manuel}, title = {Nichtmagnetische Isolatoren in Hexagonalen Gittermodellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Wir untersuchen zunächst das Hubbard-Modell des anisotropen Dreiecksgitters als effektive Beschreibung der Mott-Phase in verschiedenen organischen Verbindungen mit dreieckiger Gitterstruktur. Um die Eigenschaften am absoluten Nullpunkt zu bestimmen benutzen wir die variationelle Cluster Näherung (engl. variational cluster approximation VCA) und erhalten das Phasendiagramm als Funktion der Anisotropie und der Wechselwirkungsstärke. Wir finden f{\"u}r schwache Wechselwirkung ein Metall. F{\"u}r starke Wechselwirkung finden wir je nach Stärke der Anisotropie eine Néel oder eine 120◦-Néel antiferromagnetische Ordnung. In einem Bereich mittlerer Wechselwirkung entsteht in der Nähe des isotropen Dreiecksgitters ein nichtmagnetischer Isolator. Der Metall-Isolator-Übergang hängt maßgeblich von der Anisotropie ab, genauso wie die Art der magnetischen Ordnung und das Erscheinen und die Ausdehnung der nichtmagnetischen Isolatorphase. Spin-Bahn Kopplung ist der ausschlaggebende Parameter, der elektronische Bandmodelle in topologische Isolatoren wandelt. Spin-Bahn Kopplung im Allgemeinen beinhaltet auch den Rashba Term, der die SU(2) Symmetrie vollständig bricht. Sobald man auch Wechselwirkungen ber{\"u}cksichtigt, m{\"u}ssen sich viele theoretische Methoden auf die Analyse vereinfachter Modelle beschränken, die nur Spin-Bahn Kopplungen enthalten, welche die U(1) Symmetrie erhalten und damit eine Rashba Kopplung ausschließen. Wir versuchen diese bisher bestehende L{\"u}cke zu schließen und untersuchen das Kane-Mele Hubbard (KMH) Modell mit Rashba Spin-Bahn Kopplung und präsentieren eine systematische Analyse des Effekts der Rashba Spin-Bahn Kopplung in einem korrelierten zweidimensionalen topologischen Isolator. Wir wenden die VCA auf dieses Problem an und bestimmen das Phasendiagramm mit Wechselwirkung durch die Berechnung der lokalen Zustandsdichte, der Magnetisierung, der Einteilchenspektralfunktion und der Randzustände. Nach einer ausf{\"u}hrlichen Auswertung des KMH-Modells, bei erhaltener U(1) Symmetrie, finden wir auch f{\"u}r endliche Wechselwirkung, dass eine zusätzliche Rashba Kopplung zu neuen elektronischen Phasen f{\"u}hrt, wie eine metallische Phase und eine topologische Isolatorphase ohne Bandl{\"u}cke in der lokalen Zustandsdichte, die aber eine direkte Bandl{\"u}cke f{\"u}r jeden Wellenvektor besitzt. F{\"u}r eine Klasse von 5d Übergangsmetallen untersuchen wir ein KMH ähnliches Modell mit multidirektionaler Spin-Bahn Kopplung, das wegen seiner Relevanz f{\"u}r die Natrium-Iridate (engl. sodium iridate) als SI Modell bezeichnet wird. Diese intrinsische Kopplung bricht die SU(2) Symmetrie bereits vollständig und dennoch erhält man wegen der speziellen Form f{\"u}r starke Wechselwirkung wieder einen rotationssymmetrischen Néel-AFM Isolator. Der topologische Isolator des SIH-Modells ist adiabatisch mit dem des KMH-Modells verbunden, jedoch sind die Randströme hier nicht mehr spinpolarisiert. Wir verallgemeinern das Konzept der Klein-Transformation, das bereits erfolgreich auf Spin-Hamiltonians angewandt wurde, und wenden es auf ein Hubbard-Modell mit rein imaginären spinabhängigen H{\"u}pfen an, das im Grenzfall unendlicher Wechselwirkung in das Kitaev-Heisenberg Modell {\"u}bergeht. Dadurch erhält man ein Modell des Dreiecksgitters mit reellen spinunabhängigen H{\"u}pfen, das aber eine mehratomige Einheitszelle besitzt. F{\"u}r schwache Wechselwirkung ist das System ein Dirac Halbmetall und f{\"u}r starke Wechselwirkung erhält man eine 120◦-Néel antiferromagnetische Ordnung. F{\"u}r mittlere Wechselwirkung findet man aber einen relativ großen Bereich in dem eine nichtmagnetische Isolatorphase stabil ist. Unsere Ergebnisse deuten auf die mögliche Existenz einer Quanten Spinfl{\"u}ssigkeit hin.}, subject = {Hexagonaler Kristall}, language = {de} }