@phdthesis{Erk2018, author = {Erk, Christine}, title = {Metabolismus und Reaktivit{\"a}tsstudien neuer Arzneistoffe mittels LC-MS/MS-Methoden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung des Metabolismus sowie der Reaktivit{\"a}t verschiedener Wirk- und Arzneistoffe mittels fl{\"u}ssigchromatographischer und massen-spektrometrischer Methoden, sie gliedert sich dabei in vier Projekte. Zur Bestimmung des Metabolitenprofils wurde ein passendes In-vitro-Inkubationssystem mit Cytochrom-P-450-Systemen entwickelt. So wurden der Metabolismus und die Pharmakokinetik der Mip-Inhibitoren SF110, SF235 und SF354 gegen Legionellen, sowie neuer antitrypanosomaler Verbindungen MB209, MB343 und MB444 und von Daptomycin bestimmt. Dar{\"u}ber hinaus wurde die antibakterielle Aktivit{\"a}t des Daptomycins gegen{\"u}ber einem unbekannten Staphylokokkus-Stammes S. sciuri ermittelt. Außerdem wurden Reaktivit{\"a}tsuntersuchungen neu synthetisierter Inhibitoren gegen Tuberkulose und S. aureus durchgef{\"u}hrt. Die untersuchten Mip-Inhibitoren lieferten ein Metabolitenprofil, welches durch Ester- und Amidhydrolysen sowie Hydroxylierungen gepr{\"a}gt wurde. Die Verbindung SF110 schien dabei bereits eine gewisse Instabilit{\"a}t der Esterbindung aufzuweisen, da auch im Blindwert entsprechende Spaltprodukte identifiziert werden konnten. Die Hauptmetabolite von SF235 und SF354 bildeten sich durch unterschiedliche Hydrolysen, da die Spaltung des Molek{\"u}ls von den jeweiligen Substituenten abh{\"a}ngig ist. Innerhalb dieser Substanzklasse dominiert die mikrosomale Enzymkatalyse, da der gr{\"o}ßte metabolische Umsatz sowie die meisten Metabolite mittels mikrosomaler Fraktion des Menschen bzw. der Maus gefunden wurden. Die Klasse der Mip-Inhibitoren wird somit vor allem durch Cytochrom-P-450-Enzyme umgesetzt, wobei die Hydrophilie durch Einf{\"u}hrung polarer OH-Gruppen der Molek{\"u}le erh{\"o}ht wird. Die Hydroxylierung scheint dabei positionsspezifisch, bedingt durch sterische Hinderungen oder dirigierende Einfl{\"u}sse, abzulaufen. Stabilit{\"a}tsvergleiche zwischen SF110, SF235 und SF354 zeigten, dass die Einf{\"u}hrung einer Amidbindung anstelle der korrespondierenden Esterbindung die Substanzklasse maßgeblich metabolisch stabilisiert. Im Rahmen des murinen In-vivo-Metabolismus wurde beobachtet, dass SF235 einem deutlich st{\"a}rkeren Metabolismus unterlag als SF354 und sich der Metabolismus vor allem innerhalb der ersten 30 min vollzog. Demgegen{\"u}ber zeigten die In-vitro-Ergebnisse gegenteilige Ergebnisse, bei denen SF354 die am st{\"a}rksten metabolisierte Substanz war. Diese widerspr{\"u}chlichen Ergebnisse deuten darauf hin, dass In-vitro-Modelle nur als Anhaltspunkt verwendet werden sollten, um m{\"o}gliche Trends abzuleiten. Metabolismusstudien der Chinolonamide, die gegen die afrikanische Schlafkrankheit wirken sollen, veranschaulichten, dass die gr{\"o}ßte enzymatische Umsetzung aller drei getesteten Verbindungen mittels cytosolischer Fraktion erfolgte. Die Enzymreaktionen werden vermutlich durch ALDH bzw. MAO dominiert und nicht durch CYP bzw. FMO. Die gebildeten Metabolite in den verschiedenen Fraktionen unterlagen (ω-1)-Oxidationen, N-Desalkylierungen, Amidhydrolysen und aromatischen Hydroxylierungen. Auffallend war, dass eine Hydroxylierung am aromatischen Benzylring nur erfolgen konnte, sofern der Benzylaromat keinen Fluorsubstitutenten trug, da dieser desaktivierend wirkte. Die aromatische Hydroxylierung am Chinolonamid erfolgte dagegen bei allen drei Substanzen. Es wurde somit lediglich eine Hydroxylierung am Benzylring von MB343 festgestellt. Die enzymatische Aktivit{\"a}t aller Substanzen folgte einer Reaktionskinetik 1. Ordnung. Die unterschiedlichen Stabilit{\"a}ten der Substanzen zeigten einen deutlichen Trend: MB209 wurde, da es die instabilste Verbindung darstellt, im gr{\"o}ßten Maße umgesetzt, gefolgt von den stabileren Derivaten MB343 und MB444. Die Untersuchung der enzymatischen Aktivit{\"a}ten zeigte, dass die drei Substanzen, verglichen mit der Leitstruktur GHQ168, eine um den Faktor zehn geringere Aktivit{\"a}t aufwiesen [19]. Aufgrund der eingef{\"u}hrten Fluoratome weisen die Substanzen somit eine wesentlich h{\"o}here Stabilit{\"a}t auf. Diese Ergebnisse wurden durch die Untersuchung der Halbwertszeit best{\"a}tigt, bei der MB444 den h{\"o}chsten Wert besaß. Weiterhin ist die Position des Fluorsubstituenten am Chinolonger{\"u}st ausschlaggebend f{\"u}r die metabolische Stabilit{\"a}t, wobei MB444 aufgrund des para-Fluorsubstituenten am Chinolonamid die stabilste Verbindung darstellt. Durch Inkubation von Daptomycin mit unterschiedlichen S. sciuri-Isolaten wurde ein m{\"o}glicher Inaktivierungsmechanismus beobachtet, bei dem das Antibiotikum durch Spaltung des cyclischen Aminos{\"a}ureringes, durch Deacylierung des Fetts{\"a}ureschwanzes, einer Kombination beider Mechanismen oder durch eine Spaltung des heteroaromatischen Ringsystems von Tryptophan inaktiviert wurde. Die Proteasen des Daptomycin-resistenten S. sciuri-Isolats TS92 f{\"u}hrten zu einem Daptomycinabbau von 35 \%, unabh{\"a}ngig von der eingesetzten Menge des Arzneistoffes. Das Ausmaß des Abbaus scheint dar{\"u}ber hinaus vom eingesetzten Inkubationsmedium abh{\"a}ngig zu sein, da die Proteasen voraussichtlich auf ein bestimmtes N{\"a}hrmedium angewiesen sind. Der sensitive S. sciuri-Stamm TS93 lieferte die h{\"o}chste Abbaurate an Daptomycin mit 55 \% und widerlegt damit die Vermutung, dass Daptomycin die geringste antibakterielle Aktivit{\"a}t gegen{\"u}ber diesem S. sciuri-Stamm aufweist. Im In-vitro-Metabolismus zeigte Daptomycin insgesamt eine sehr geringe Umsetzungsmenge mit maximal 5 \% nach 4 h und einer geringen Metabolitenbildung. Hier wurde nur ein Metabolit gefunden, welcher auch mittels S. sciuri-Inkubation identifiziert wurde. Dieser Mechanismus k{\"o}nnte somit auf anderem Wege verlaufen. Die Reaktivit{\"a}tsstudien der kovalenten Inhibitoren der FadA5-Thiolase gegen Tuberkulose zeigten, dass nur die Verbindungen C1 und C4 eine Reaktivit{\"a}t gegen{\"u}ber der Aminos{\"a}ure Cystein93 im aktiven Zentrum besaßen, die somit f{\"u}r den gew{\"u}nschten Einsatzzweck geeignet sein k{\"o}nnten. Weiterhin wurde bei den kovalenten Inhibitoren der Enoyl-ACP-Reduktase mit dem Enzym FabI, welches im aktiven Zentrum ein Tyrosin besitzt, keine Reaktion festgestellt, da keine Addukte identifiziert wurden. Dies ist vermutlich auf die Unl{\"o}slichkeit im verwendeten TRIS-Puffer zur{\"u}ckzuf{\"u}hren.}, subject = {Biotransformation}, language = {de} }