@phdthesis{Bohn2007, author = {Bohn, Holger Florian}, title = {Biomechanik von Insekten-Pflanzen-Interaktionen bei Nepenthes-Kannenpflanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26101}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Interaktionen zwischen Insekten und Pflanzen k{\"o}nnen auf chemischen oder mechanischen Faktoren beruhen. Mechanische Faktoren spielen eine besonders wichtige Rolle bei den Fallen karnivorer Pflanzen. Ziel dieser Arbeit war es, die Rolle mechanischer Faktoren in der Interaktion zwischen der Kannenpflanze Nepenthes bicalcarata und der Ameise Camponotus schmitzi aufzukl{\"a}ren, bei der Ameisen Gegenanpassungen zu spezialisierten pflanzlichen Fangstrukturen entwickelt haben. Im Rahmen meiner Arbeit habe ich mich mit den Fragen besch{\"a}ftigt, 1) welche Kannenstrukturen und welche Mechanismen f{\"u}r den Fang von Arthropoden wichtig sind und 2) welche speziellen Anpassungen C. schmitzi-Ameisen f{\"u}r das Leben auf ihrer karnivoren Wirtspflanze besitzen. Bisher wurde angenommen, dass Nepenthes-Kannen Tiere mit Hilfe von rutschigen Wachskristallschichten fangen. Ich konnte zeigen, dass ein weiterer, bisher unbekannter Fangmechanismus existiert, welcher auf speziellen Oberfl{\"a}cheneigenschaften des Kannenrandes (Peristom) und "Insekten-Aquaplaning" basiert. Das Peristom besitzt eine regelm{\"a}ßige Mikrostruktur, welche daf{\"u}r sorgt, dass die Oberfl{\"a}che vollst{\"a}ndig mit Wasser benetzbar ist, so dass sie bei feuchter Witterung von homogenen Fl{\"u}ssigkeitsfilmen {\"u}berzogen ist. Auf dem trockenen Peristom k{\"o}nnen Ameisen ohne Schwierigkeiten laufen und Nektar von den am inneren Peristomrand gelegenen Nektarien ernten. Wird die Oberfl{\"a}che aber beispielsweise durch Regen nass, rutschen die meisten Tiere ab und st{\"u}rzen in die Kanne. Messungen der Reibungskr{\"a}fte von Weberameisen (Oecophylla smaragdina) auf dem Peristom von N. bicalcarata zeigten, dass Fl{\"u}ssigkeitsfilme auf der Oberfl{\"a}che die Anhaftung der Haftorgane (Arolien) verhindern, und dass die Mikrostruktur des Peristoms auch den Einsatz der Krallen unterbindet. Versuche an Nepenthes alata zeigten dar{\"u}ber hinaus, dass dieser Fangmechanismus des Peristoms auch f{\"u}r Nepenthes-Arten mit wachsbereifter Kanneninnenwand essentiell, und die Wachsschicht eher f{\"u}r die Retention gefangener Tiere wichtig ist. Zur Analyse der {\"o}kologischen Auswirkungen des "Aquaplaning"-Fangmechanismus habe ich die Peristomfeuchte von Nepenthes rafflesiana var. typica-Kannen zeitgleich mit meteorologischen Daten im Feld kontinuierlich aufgezeichnet und mit Experimenten zur Beurteilung der Fangeffizienz der Kannen kombiniert. Die Ergebnisse dieser Versuche zeigen, dass die Kannen abh{\"a}ngig vom Befeuchtungsgrad des Peristoms zeitweise sehr effiziente Fallen mit Fangraten von 80\% sein k{\"o}nnen, w{\"a}hrend sie zu anderen Zeiten vollkommen ineffizient sind. Die Variation der Peristomfeuchte wird durch Regen, Kondensation und von den Peristomnektarien sezerniertem Nektar verursacht. Es ist zu vermuten, dass die nur zeitweise und unvorhersehbare Aktivierung der Nepenthes-Kannenfallen durch N{\"a}sse der Evolution von Vermeidungsstrategien bei Beutetieren entgegenwirkt. Im Rahmen der Untersuchungen, welche mechanischen Anpassungen C. schmitzi-Ameisen f{\"u}r das Leben auf N. bicalcarata besitzen habe ich mich auf die Fragen konzentriert, wie es den Ameisen gelingt den Peristom-Fangmechanismus zu umgehen und welche Anpassungen sie besitzen um in der Kannenfl{\"u}ssigkeit tauchend und schwimmend nach Nahrung zu suchen. Im Gegensatz zu generalistischen Arten st{\"u}rzen C. schmitzi-Ameisen auf dem nassen Peristom nicht ab. Durch selektive Manipulation der tarsalen Haftstrukturen konnte ich demonstrieren, dass die Arolien f{\"u}r die Peristomlauff{\"a}higkeit der C. schmitzi-Ameisen eine wesentliche Rolle spielen. F{\"u}r das Furagieren in der Kannenfl{\"u}ssigkeit verf{\"u}gen C. schmitzi-Ameisen {\"u}ber ein sich wiederholendes, stereotypes Verhaltensmuster, welches aus einer Unterwasserlauf- und einer Oberfl{\"a}chenschwimmphase besteht. Meine Untersuchungen dieses Verhaltensmusters zeigten, dass die Ameisen am Ende der Unterwasserlaufphase mit Hilfe ihres stets vorhandenen Auftriebs zur Fl{\"u}ssigkeitsoberfl{\"a}che aufsteigen. Dabei taucht ein Teil ihres Hinterleibs aus der Kannenfl{\"u}ssigkeit auf, was den Ameisen die Sauerstoffaufnahme aus der Luft erm{\"o}glicht. Nach dem Auftauchen schwimmen C. schmitzi-Ameisen mittels schneller Beinbewegungen an der Oberfl{\"a}che der Kannenfl{\"u}ssigkeit. Dabei {\"a}hnelt die Bewegungskoordination ihrer Beine dem bei Ameisen f{\"u}r die Fortbewegung an Land typischen Dreifußgang. Ein Vergleich der Kinematik von schwimmenden und laufenden C. schmitzi-Ameisen hat gezeigt, dass schwimmende Ameisen ihre Beine in der Schlagphase mit einer h{\"o}heren Winkelgeschwindigkeit als in der R{\"u}ckholphase bewegen, w{\"a}hrend dies bei den laufenden Tieren genau umgekehrt ist. Ferner strecken schwimmende Ameisen ihre Beine w{\"a}hrend der Schlagphase weiter aus als in der R{\"u}ckholphase, wohingegen laufende Ameisen in beiden Bewegungsphasen vergleichbare Beinradien aufweisen. Dies l{\"a}sst den Schluss zu, dass die Schwimmkinematik der C. schmitzi-Ameisen eine abgewandelte Form ihrer Laufkinematik darstellt, welche f{\"u}r die Erzeugung von Vortrieb im Wasser optimiert wurde.}, subject = {Biomechanik}, language = {de} } @phdthesis{Starke2007, author = {Starke, Josefine}, title = {Dynamik, Biomechanik und Plastizit{\"a}t des Aktinzytoskeletts in migrierenden B16/F1 GFP-Aktin Melanomzellen in 2D und 3D extrazellul{\"a}rer Matrix}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Die Anpassung des Aktinzytoskeletts an extrazellul{\"a}re Gewebsstrukturen ist Voraussetzung f{\"u}r die Interaktion mit der extrazellul{\"a}ren Matrix und f{\"u}r die Zellbewegung, einschließlich der Invasion und Metastasierung von Tumorzellen. Wir untersuchten bei invasiven B16/F1 GFP-Aktin Mausmelanomzellen, ob und wie sich Zellform, Art und Effizienz der Bewegung an physikalisch unterschiedlich beschaffene kollagen{\"o}se Umgebungen anpassen: 1) mit Kollagen-Monomeren beschichtete 2D Objekttr{\"a}ger, 2) 2D Oberfl{\"a}che einer fibrill{\"a}ren Kollagenmatrix und 3) Zellen, die in einer 3D Kollagenmatrix eingebettet waren. Zur Darstellung des Aktinzytoskeletts wurden Zellen eingesetzt, die GFP-Aktin Fusionsprotein exprimierten, und mittels Zeitraffer-Videomikroskopie und Konfokalmikroskopie untersucht. Im direkten Vergleich waren Struktur und Dynamik des Aktinzytoskelett wie auch Zellform und Art der Migration unterschiedlich in den verschiedenen Umgebungen. Auf 2D planer Oberfl{\"a}che erfolgte eine rasche Adh{\"a}sion und Abflachung der Zellen (Spreading) mit nachfolgender Migration mit Bildung fokaler Adh{\"a}sionszonen, in die kabelartige Aktinstrukturen (Stress fibers) einstrahlten. Dagegen entwickelte sich in 3D Kollagenmatrices eine spindelf{\"o}rmige, fibroblasten{\"a}hnliche Zellform (mesenchymal) mit zylindrischen fingerf{\"o}rmigen vorderen Pseudopodien, die Zug der Zelle nach vorne bewirken und hochdynamisches polymeres Aktin, nicht jedoch Stress Fibers enthielten. Eine {\"a}hnliche Zellform und Struktur des Zytoskeletts entwickelte sich in Zellen auf 2D fibrill{\"a}rem Kollagen. Die Kontaktfindung und Migrationseffizienz auf oder in fibrill{\"a}ren Matrices war im Vergleich zu 2D kollagenbeschichteter Oberfl{\"a}che erschwert, die Migrationseffizienz verringert. In Kontrollversuchen wurden Migration und polarisierte Bildung von Aktindynamik durch Inhibitoren des Aktinzytoskeletts (Cytochalasin D, Latrunculin B, Jasplakinolide) stark gehemmt. Diese Befunde zeigen , dass die Struktur und Dynamik des Aktinzytoskeletts sowie die Art der Migration in Tumorzellen st{\"a}rker als bisher angenommen durch die umgebende Kollagenstruktur bestimmt wird. W{\"a}hrend 3D Kollagenmatrices in vivo {\"a}hnliche bipolare Zytoskelettstruktur f{\"o}rdern, m{\"u}ssen Abflachung der Zellen mit Bildung von Stress Fibers als spezifische Charakteristika von 2D Modellen angesehen werden.}, subject = {Aktin}, language = {de} } @phdthesis{Schmitt2006, author = {Schmitt, Stefanie}, title = {Biomechanisch begr{\"u}ndeter Rehabilitationsansatz bei verschiedenen Krankheitsbildern des Handgelenks in der orthop{\"a}dischen Praxis : eine prospektive Studie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20460}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Handgelenkserkrankungen haben sowohl in Amerika wie auch in Europa mit steigenden Fallzahlen einen durch den Ausfall der Arbeitskraft nicht unerheblichen Einfluß auf die Volkswirtschaft. St{\"a}ndige Wiederholungen in hoher Frequenz werden f{\"u}r die RSI urs{\"a}chlich verantwortlich gemacht. Basierend auf der Annahme, dass Vibrationen und Beschleunigungskr{\"a}ften mittels D{\"a}mpfk{\"o}rpern beeinflusst werden k{\"o}nnen, wurde die Coopercare Lastrap-Bandage entwickelt. Obwohl die Behandlung mit Handgelenksorthesen eine allgemein g{\"a}ngige Form der Behandlung von verschiedenen Handgelenkserkrankungen darstellt, gibt es hierzu nur sehr wenige klinische Daten {\"u}ber den Stellenwert dieser Verfahren. Daher wurde in einer prospektiven randomisierten L{\"a}ngsschnitt-Studie der Stellenwert einer Bandagenbehandlung mit biomechanisch begr{\"u}ndetem Ansatz im Vergleich zur konventionellen Bandagentherapie an 34 Patienten mit unterschiedlichen Erkrankungen des Handgelenks getestet. Unserer Studie zufolge sind entsprechend dem biomechanischen Ansatz die unter 40-j{\"a}hrigen m{\"a}nnlichen Patienten mit seit kurzem bestehender Tendovaginitis die Zielgruppe, die am Besten von einer Bandagentherapie mit der Lastrap®-Bandage profitieren. Bei unter 40-j{\"a}hrigen m{\"a}nnlichen Patienten mit Distorsion des Handgelenks ist die Manu-Hit®-Bandage zu bevorzugen. Durch die deutliche Schmerzreduktion k{\"o}nnen hier Handgelenksorthesen unter anderem den Gebrauch von NSAR verringern und damit die Arzneimittelausgaben senken.}, language = {de} } @phdthesis{Theune2003, author = {Theune, Michael}, title = {Zusammenh{\"a}nge zwischen kinetischen und kinematischen Parametern von Laufschuhen und dem subjektiven Tragekomfort}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6642}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Das Ziel der vorliegenden Arbeit war es, Zusammenh{\"a}nge zwischen biomechanischen Parametern von Laufschuhen und dem subjektiven Tragekomfort zu ermitteln. Dazu wurden kinetische und kinematische Parameter von sogenannten Lieblingslaufschuhen mit denen zweier Referenz-Schuhmodelle verglichen und mit der individuellen plantaren Druckverteilung und der Fußform assoziiert. Die experimentellen Daten zeigen, daß die Bodenreaktionskr{\"a}fte eines Schuhs von der Form des Leistens, den Materialeigenschaften der Zwischensohle und dem spezifischen Laufmuster des L{\"a}ufers abh{\"a}ngen. Durch einen neurophysiologischen, muskelgesteuerten D{\"a}mpfungsmechanismus kommt es zu einer Anpassung des Laufstils an unterschiedliche D{\"a}mpfungs- und Stabilit{\"a}tseigenschaften des Laufschuhs. Dadurch werden Belastungen f{\"u}r den aktiven und passiven Bewegungsapparat innerhalb eines bestimmten Bereiches konstant gehalten. Ein optimaler Laufschuh sollte eine {\"a}hnliche Kinematik aufweisen wie der individuelle Barfußlauf. Diese Forderung wurde teilweise durch den Lieblingslaufschuh erf{\"u}llt. Es ist anzunehmen, daß der Komfort aus einem komplexen Zusammenspiel von K{\"o}rper, Laufschuh und Laufoberfl{\"a}che resultiert. F{\"u}r die Optimierung von Komfort, Performance und Verletzungsprophylaxe m{\"u}ssen Paßform und Materialeigenschaften des Laufschuhs sowie die individuelle Situation des L{\"a}ufers gleichermaßen ber{\"u}cksichtigt werden. Deshalb sollten Laufschuhe nach den spezifischen kinetischen und kinematischen Gegebenheiten des einzelnen L{\"a}ufers konzipiert werden, denn der Komfort ist ein vom L{\"a}ufer abh{\"a}ngiges Ph{\"a}nomen.}, language = {de} }