@phdthesis{Voss2021, author = {Voß, Lena Johanna}, title = {{\"A}nderungen der Membranspannung und der Osmolarit{\"a}t als Ausl{\"o}ser f{\"u}r Calciumsignale in Pflanzen - Studien an Schließzellen von Nicotiana tabacum und Polypodium vulgare}, doi = {10.25972/OPUS-21963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219639}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Stomata sind kleine Poren in der Blattoberfl{\"a}che, die Pflanzen eine Anpassung ihres Wasserhaushalts an sich {\"a}ndernde Umweltbedingungen erm{\"o}glichen. Die {\"O}ffnungsweite der Stomata wird durch den Turgordruck der Schließzellen bestimmt, der wiederum durch Ionenfl{\"u}sse {\"u}ber die Membranen der Zelle reguliert wird. Ein Netzwerk von Signaltransduktionswegen sorgt daf{\"u}r, dass Pflanzen die Stomabewegungen an die Umgebungsbedingungen anpassen k{\"o}nnen. Viele molekulare Komponenten dieser Signaltransduktionketten in Schließzellen von Angiospermen sind inzwischen bekannt und Calcium spielt darin als Signalmolek{\"u}l eine wichtige Rolle. Weitgehend unbekannt sind dagegen die Mechanismen, die zur Erzeugung von transienten Erh{\"o}hungen der Calciumkonzentration f{\"u}hren. Auch die molekularen Grundlagen der Regulierung der Stomaweite in Nicht-Angiospermen-Arten sind bisher nur wenig verstanden. Um zur Aufkl{\"a}rung dieser Fragestellungen beizutragen, wurden in dieser Arbeit Mechanismen zur Erh{\"o}hungen der cytosolischen Calciumkonzentration sowie elektrophysiologische Eigenschaften von Schließzellen untersucht. Der Fokus lag hierbei insbesondere auf der Visualisierung cytosolischer Calciumsignale in Schließzellen. Im ersten Teil der Arbeit wurde durch die Applikation hyperpolarisierender Spannungspulse mittels TEVC (Two Electrode Voltage Clamp) gezielt eine Erh{\"o}hung der cytosolischen Calciumkonzentration in einzelnen Schließzellen von Nicotiana tabacum ausgel{\"o}st. Um die Dynamik der cytosolischen Calciumkonzentration dabei zeitlich und r{\"a}umlich hoch aufgel{\"o}st zu visualisieren, wurde simultan zu den elektrophysiologischen Messungen ein Spinning-Disc-System f{\"u}r konfokale Aufnahmen eingesetzt. W{\"a}hrend der Applikation hyperpolarisierender Spannungspulse wurde eine transiente Vergr{\"o}ßerung des cytosolischen Volumens beobachtet. Diese l{\"a}sst sich durch einen osmotisch getriebenen Wasserfluss erkl{\"a}ren, der durch die Ver{\"a}nderung der Ionenkonzentration im Cytosol verursacht wird. Diese wiederum wird durch die spannungsabh{\"a}ngige Aktivierung einw{\"a}rtsgleichrichtender Kaliumkan{\"a}le in der Plasmamembran der Schließzellen und durch den Kompensationsstrom der eingestochenen Mikroelektrode hervorgerufen. Mit Hilfe des calciumsensitiven Farbstoffs Fura-2 konnte gezeigt werden, dass die Erh{\"o}hung der freien cytosolischen Calciumkonzentration w{\"a}hrend der Applikation hyperpolarisierender Spannungspulse durch zwei Mechanismen verursacht wird. Der erste Mechanismus ist die Aktivierung hyperpolarisationsaktivierter, calciumpermeabler Kan{\"a}le (HACCs) in der Plasmamembran, die schon 1998 von Grabov \& Blatt beschrieben wurde. Zus{\"a}tzlich zu diesem Mechanismus der Calciumfreisetzung, konnte ein zweiter bislang unbekannter Mechanismus aufgedeckt werden, bei dem Calcium aus intrazellul{\"a}ren Speichern in das Cytosol freigesetzt wird. Dieser Mechanismus h{\"a}ngt mit der oben beschriebenen Vergr{\"o}ßerung des cytosolischen Volumens zusammen und ist wahrscheinlich durch die {\"A}nderungen der mechanischen Spannung der Membran bzw. der Osmolarit{\"a}t innerhalb der Zelle bedingt. Diese k{\"o}nnten zu einer Aktivierung mechanosensitiver, calciumpermeabler Kan{\"a}le f{\"u}hren. Der zweite Teil der Arbeit besch{\"a}ftigt sich mit den molekularen Grundlagen der Regulierung von Stomata in Nicht-Angiospermen. In Schließzellen von Polypodium vulgare konnten durch die Anwendung der TEVC-Technik {\"a}hnliche spannungsabh{\"a}ngige Str{\"o}me {\"u}ber die Plasmamembran gemessen werden wie in Angiospermen. Ebenso wurden durch die Applikation hyperpolarisierender Spannungspulse an Schließzellen von Polypodium und Asplenium Erh{\"o}hungen der cytosolischen Calciumkonzentration ausgel{\"o}st, die auf die Existenz spannungsabh{\"a}ngiger, calciumpermeabler Kan{\"a}le in der Plasmamembran hinweisen. Die Diffusion von Fluoreszenzfarbstoffen in die Nachbarschließzellen nach der iontophoretischen Beladung in Polypodium, Asplenium, Ceratopteris und Selaginella zeigte, dass in diesen Arten eine symplastische Verbindung zwischen benachbarten Schließzellen besteht, die an Schließzellen von Angiospermen bisher nicht beobachtet werden konnte. Anhand elektronenmikroskopischer Aufnahmen von Polypodium glycyrrhiza Schließzellen konnte gezeigt werden, dass diese Verbindung wahrscheinlich durch Plasmodesmata zwischen benachbarten Schließzellen gebildet wird. Durch die Analyse der Calciumdynamik in benachbarten Schließzellen nach hyperpolarisierenden Spannungspulsen stellte sich heraus, dass die Calciumhom{\"o}ostase trotz symplastischer Verbindung in beiden Schließzellen unabh{\"a}ngig voneinander reguliert zu werden scheint. Im Rahmen der Untersuchungen an Farnschließzellen wurde desweiteren eine Methode zur Applikation von ABA etabliert, die es erlaubt mithilfe von Mikroelektroden das Phytohormon iontophoretisch in den Apoplasten zu laden. Im Gegensatz zu den Schließzellen von Nicotiana tabacum, die auf eine so durchgef{\"u}hrte ABA-Applikation mit dem Stomaschluss reagierten, wurde in Polypodium vulgare auf diese Weise kein Stomaschluss ausgel{\"o}st. Da die ABA-Antwort der Farnstomata aber auch von anderen Faktoren wie Wachstumsbedingungen abh{\"a}ngig ist (H{\~o}rak et al., 2017), kann eine ABA-Responsivit{\"a}t in dieser Farnart trotzdem nicht vollkommen ausgeschlossen werden. Die Freisetzung von Calcium aus intrazellul{\"a}ren Speichern, wie sie in dieser Arbeit gezeigt wurde, k{\"o}nnte eine wichtige Rolle bei der Regulierung der Stomaweite spielen. Zur Aufkl{\"a}rung dieser Fragestellung w{\"a}re die Identifizierung der Kan{\"a}le, die an der osmotisch/mechanisch induzierten Calciumfreisetzung aus internen Speichern beteiligt sind, von großem Interesse. Weiterf{\"u}hrende Studien an Schließzellen von Farnen k{\"o}nnten die physiologische Bedeutung der aus Angiospermen bekannten Ionenkan{\"a}le f{\"u}r die Stomabewegungen in evolution{\"a}r {\"a}lteren Landpflanzen aufkl{\"a}ren und so maßgeblich zum Verst{\"a}ndnis der Evolution der Regulierunsgmechanismen von Stomata beitragen. Außerdem stellt sich die Frage, welche Rolle die hier gezeigte symplastische Verbindung der Nachbarschließzellen durch Plasmodesmata f{\"u}r die Funktion der Stomata spielt.}, subject = {Schließzelle}, language = {de} } @phdthesis{Schaefer2020, author = {Sch{\"a}fer, Nadine}, title = {Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der W{\"u}stenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen}, doi = {10.25972/OPUS-18649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren f{\"u}hren zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen {\"u}ber Strategien zur Toleranz gegen{\"u}ber abiotischem Stress sowie {\"u}ber Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis f{\"u}r die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen W{\"u}stenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente W{\"u}stenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den W{\"u}sten der Arabischen Halbinsel wachsen und ertragreich Fr{\"u}chte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und -physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, f{\"u}hrten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die f{\"u}r Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Z{\"u}chtungsprogramme dikotyledoner Nutzpflanzen dienen. W{\"u}stenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der fl{\"u}chtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vor{\"u}bergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen sch{\"u}tzt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegen{\"u}ber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der W{\"u}stenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zuk{\"u}nftige Studien m{\"u}ssen nun klären, ob der fl{\"u}chtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegen{\"u}ber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zur{\"u}ckzuf{\"u}hren sein.}, subject = {Dattelpalme}, language = {de} } @phdthesis{Imes2016, author = {Imes, Dennis}, title = {Aufkl{\"a}rung der molekularen Struktur und Funktion des R-Typ Anionenkanals QUAC1 in Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Zum Gasaustausch mit Ihrer Umgebung besitzen h{\"o}here Pflanzen stomat{\"a}re Komplexe. Die Turgor-getrieben Atmungs{\"o}ffnungen in der Epidermis der Bl{\"a}tter werden von zwei Schließzellen ums{\"a}umt. Um bei Trockenheit einen exzessiven Verlust von Wasser zu verhindern, synthetisieren/importieren Schließzellen das Stresshormon ABA (Abszisins{\"a}ure), das {\"u}ber eine schnelle ABA-Signalkaskade plasmamembrangebundene Ionenkan{\"a}le steuert. Dabei wird der Stomaschluss durch die Aktivit{\"a}t von R-(rapid) und S-(slow)Typ Anionenkan{\"a}len initiiert. Obwohl die R- und S-Typ Anionenstr{\"o}me in Schließzellen seit Jahrzehnten bekannt waren, konnte erst k{\"u}rzlich das Gen identifiziert werden, das f{\"u}r den S-Typ Anionenkanal (SLAC1, Slow activating Anion Channel 1) kodiert. Daraufhin wurde schnell der Zusammenhang zwischen dem Stresshormon ABA, der ABA-Signalkette und der Aktivit{\"a}t des SLAC1 Anionenkanals im heterologen Expressionssystem der X. laevis Oozyten als auch in Schließzellprotoplasten aufgekl{\"a}rt. Es konnte gezeigt werden, dass ABA durch einen zytosolischen Rezeptor/Phosphatasekomplex (RCAR1/ABI1) erkannt wird und die Aktivit{\"a}t von kalziumabh{\"a}ngigen Kinasen (CPK-Familie) sowie kalziumunabh{\"a}ngigen Kinasen der SnRK2-Familie (OST1) steuert. In Anwesenheit von ABA phosphorylieren diese Kinasen SLAC1 und sorgen so f{\"u}r die Aktivierung von Anionenstr{\"o}men und damit f{\"u}r die Initiierung des Stomaschlusses. Die genetische Herkunft der ABA-induzierten R-Typ Str{\"o}me in Schließzellen war zu Beginn der vorliegenden Arbeit noch nicht bekannt. R-Typ Str{\"o}me zeichnen sich durch eine strikte Spannungsabh{\"a}ngigkeit und sehr schnellen Aktivierungs- sowie Deaktivierungskinetiken aus. Die Charakterisierung von Verlustmutanten des Schließzell-exprimierten Gens ALMT12 (Aluminium-aktivierter Malattransporter 12) konnte in Zusammenarbeit mit der Arbeitsgruppe Martinoia (Z{\"u}rich) erste Hinweise auf die Beteiligung dieses Gens an der Stomabewegung demonstrieren. Anschließende Patch-Clamp Untersuchungen an Schließzellprotoplasten aus Wildtyppflanzen und ALMT12-Verlustmutanten zeigten, dass ALMT12 f{\"u}r die Malat-aktivierte R-Typ Anionenstromkomponente verantwortlich ist. Deshalb wurde der Anionenkanal QUAC1 (Quickly activating Anion Channel 1) benannt - in Anlehnung an die Benennung des Anionenkanals SLAC1. Mit der Identifizierung von QUAC1 in planta war es nun meine Aufgabe, die elektrischen Eigenschaften von ALMT12/QUAC1 und dessen Aktivit{\"a}tskontrolle durch die ABA-Signalkaskade im heterologen Expressionssystem der Xenopus Oozyten zu untersuchen. Protein-Protein Interaktionsstudien mit der Hilfe der Bimolekularen Fluoreszenz-Technik, sowie die Beobachtung von markant erh{\"o}hten QUAC1 Anionenstr{\"o}men in Anwesenheit der SnRK2 Kinase OST1 und den Calcium-abh{\"a}ngigen Kinasen CPK2 und CPK20, ließen den Schluss zu, dass QUAC1, ebenso wie SLAC1, unter der Kontrolle des schnellen ABA-Signalwegs steht. Eine zus{\"a}tzliche Expression des negativen Regulators ABI1 unterdr{\"u}ckte die aktivierenden Eigenschaften der QUAC1-aktivierenden Kinasen, was die Hypothese der Koregulation von S- und R-Typ Anionenkan{\"a}len durch die gleiche ABA-Signalkaskade weiter unterst{\"u}tzt. Zur weiteren Aufkl{\"a}rung der elektrischen Eigenschaften von QUAC1 wurden tiefgreifende elektrophysiologische Untersuchungen mit der Zwei-Elektroden-Spannungsklemmen Technik durchgef{\"u}hrt. Durch die Wahl von geschickten Spannungsprotokollen konnte sowohl die schnelle Aktivierungskinetik als auch die schnelle Deaktivierungskinetik von QUAC1 bestimmt und quantifiziert werden. Diese Stromantworten waren sehr {\"a}hnlich zu den R-Typ Str{\"o}men, die man von Patch-Clamp Untersuchungen an Schließzellprotoplasten kannte, was ein weiteres Indiz daf{\"u}r war, dass es sich bei QUAC1 tats{\"a}chlich um eine Komponente des R-Typ Kanals aus Schließzellen handelt. Weiterf{\"u}hrende Untersuchungen bez{\"u}glich der Spannungsabh{\"a}ngigkeit und der Selektivit{\"a}t von QUAC1 charakterisierten das Protein als einen Depolarisations-aktivierten Anionenkanal mit einer starken Pr{\"a}ferenz f{\"u}r Dicarbons{\"a}uren wie Malat und Fumarat. Zudem konnte auch eine Leitf{\"a}higkeit f{\"u}r Sulfat und Chlorid nachgewiesen werden. Interessanterweise erwies sich Malat nicht nur als ein permeierendes Ion, sondern auch als ein regulierendes Ion, welches das spannungsabh{\"a}ngige Schalten von QUAC1 maßgeblich beeinflusst. Extrazellul{\"a}res Malat verschob die Offenwahrscheinlichkeit von QUAC1 sehr stark zu negativeren Membranspannungen, so dass der Anionenkanal bereits bei typischen Ruhespannungen von Schließzellen (ca. -150 mV) aktiviert werden konnte. Eine Beladung von QUAC1-exprimierender Oozyten mit Malat bewirkte zum einen h{\"o}here Anioneneffluxstr{\"o}me, aber auch eine Verschiebung der spannungsabh{\"a}ngigen Offenwahrscheinlichkeit zu negativeren Membranpotentialen. Struktur-Funktionsanalysen sollten die umstrittene Topologie von ALMT-{\"a}hnlichen Proteinen beleuchten und die molekulare Herkunft der Phosphorylierungsaktivierung aufzeigen, sowie die Malatabh{\"a}ngigkeit und die starke Spannungsabh{\"a}ngigkeit von QUAC1 aufkl{\"a}ren. Es zeigte sich jedoch schnell, dass Punktmutationen und Deletionen im C-Terminus von QUAC1 sehr h{\"a}ufig zu nicht-funktionellen Mutanten f{\"u}hrten. Diese Tatsache weist darauf hin, dass es sich um einen hoch-strukturierten und funktionell sehr wichtigen Bereich des Anionenkanals handelt. Auch die Topologie des Anionenkanalproteins wird in der Literatur kontrovers diskutiert. Sowohl die Lage des N- und C-Terminus (extrazellul{\"a}r oder intrazellul{\"a}r), als auch die Anzahl der membrandurchspannenden Dom{\"a}nen war nicht abschließend gekl{\"a}rt. Deshalb wurde in einem Fluoreszenz-basiertem Ansatz die Lage der Termini bestimmt. Im Rahmen meiner Arbeit konnte somit eindeutig gezeigt werden, dass sich beide Termini im Zytosol der Zelle befinden. Auf Grundlage von Modellen aus der Literatur und meiner Topologiebestimmungen konnte schließlich ein erweitertes Modell zur Struktur von QUAC1 entwickelt werden. Dieses Modell kann in Zukunft als Ausgangspunkt f{\"u}r weiterf{\"u}hrende Struktur-Funktionsanalysen dienen. Diese Arbeit hat somit gezeigt, dass das Gen QUAC1 tats{\"a}chlich eine Komponente der R-Typ Str{\"o}me in Schließzellen kodiert. Ebenso wie SLAC1 steht der Malat-induzierte Anionenkanal QUAC1 unter der Kontrolle der schnellen ABA-Signalkaskade. In Zukunft bleibt zu kl{\"a}ren, welche weiteren Gene f{\"u}r die R-Typ Kanalproteine in Schließzellen kodieren und welche strukturelle Grundlage f{\"u}r die besonderen Eigenschaften von QUAC1 hinsichtlich seiner schnellen Kinetiken, seiner Selektivit{\"a}t und Aktivierbarkeit durch Malat.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Maierhofer2012, author = {Maierhofer, Tobias}, title = {Funktionelle Charakterisierung von SLAC1-homologen Anionenkan{\"a}len aus Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {S-Typ (slow)-Anionenkan{\"a}le vermitteln in Schließzellen den Efflux von Chlorid und Nitrat, welcher letztendlich zum Schließen der Stomata, z.B. als Antwort auf Trockenstress, f{\"u}hrt. Dabei kommt dem Phytohormon Abscisins{\"a}ure (ABA) eine zentrale Rolle zu. Es wird als Antwort auf Trockenheit synthetisiert und vermittelt {\"u}ber eine schnelle ABA-Signaltransduktionskette die Aktivierung von S-typ Anionenkan{\"a}len. SLAC1 war die erste Komponente eines S-Typ-Anionenkanals, die in Schließzellen identifiziert wurde. Durch die Expression in Xenopus Oozyten, konnte SLAC1 als S-Typ-Anionenkanal funktionell charakterisiert werden und seine Regulation {\"u}ber Kinasen (OST1, CPK21/23) und Phosphatasen (ABI1, ABI2) beschrieben werden. Mit diesen Untersuchungen gelang ein entscheidender Durchbruch bei der Entschl{\"u}sselung von Netzwerken, welche den Anionentransport in Schließzellen als Antwort auf Trockenstress regulieren. Im Laufe dieser Arbeit konnte in Schließzellen von Arabidopsis auch die Expression des SLAC1 Homolog 3 (SLAH3) nachgewiesen werden. Die Koexpression von SLAH3 mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 in Xenopus Oozyten f{\"u}hrte zu Nitrat-induzierten Anionenstr{\"o}men. Dabei wurde die Aktivit{\"a}t dieses S-Typ-Anionenkanals, sowohl durch Phosphorylierung, als auch durch Kalzium und Nitrat gesteuert. {\"A}hnlich wie bei der Regulation von SLAC1 konnte die Aktivit{\"a}t von SLAH3 durch die Proteinphosphatase ABI1, aus der Familie der PP2Cs, blockiert werden. Diese Eigenschaft von ABI1 passt sehr gut zur bekannten Rolle dieser Phosphatase in Schließzellen: ABI1 ist ein negativer Regulator der ABA-Signalkaskade und wird durch ABA inhibiert. Unsere biophysikalischen Analysen f{\"u}hrten schließlich zur Rekonstitution des schnellen ABA-Signaltransduktionsweges. Die Bindung von ABA an den Komplex aus ABA-Rezeptor (RCAR/PYL/PYR) und ABI1 bewirkt die Inaktivierung von ABI1 und somit die Aktivierung von CPK21. F{\"u}r deren volle Aktivit{\"a}t ist eine ABA-abh{\"a}ngige Erh{\"o}hung der zytosolischen Ca2+-Konzentration notwendig. Die aktivierte Kinase CPK21 ist schließlich in der Lage, den Anionenkanal SLAH3 zu phosphorylieren und in der Anwesenheit von Nitrat zu aktivieren. Somit liefert die Identifizierung und Charakterisierung von SLAH3, als den Nitrat-, Kalzium- und ABA-sensitiven Anionenkanal in Schließzellen, Einblicke in die Beziehung zwischen der Reaktion dieses Zelltyps auf Trockenstress, der Funktion von Nitrat als Signalmolek{\"u}l und dem Nitratmetabolismus. F{\"u}r die meisten h{\"o}heren Pflanzen stellt Nitrat die wichtigste Stickstoffquelle dar. Die Nitrataufnahme {\"u}ber die Wurzel repr{\"a}sentiert daher den entscheidenden Schritt f{\"u}r den Stickstoff-Metabolismus. Ausgehend von den Zellen des Wurzelkortex muss das Nitrat f{\"u}r den Langstreckentransport in die oberen Pflanzenorgane, in die Xylemgef{\"a}ße der Stele eingebracht werden. Die Identifikation von Proteinen und Genen, die f{\"u}r den Nitrattransport verantwortlich sind, ist f{\"u}r das Verst{\"a}ndnis der Nitrataufnahme und -verteilung in der Pflanze eine Grundvoraussetzung. Dabei scheinen Protonen-gekoppelte Transporter der NRT1-, bzw. NRT2-Klasse, die Verschiebung von Nitrat aus dem Boden in die Wurzeln zu bewerkstelligen. Aus der Endodermis, bzw. den Xylem-Parenchymzellen muss Nitrat anschließend in das extrazellul{\"a}re Medium der Xylemgef{\"a}ße freigegeben werden, um {\"u}ber den Transpirationssog in den Spross zu gelangen. Auch am Transport dieses Anions in das Xylem ist mit NRT1.5 ein Nitrattransporter der NRT1-Klasse beteiligt, jedoch ergaben Experimente an NRT1.5-Verlustmutanten, dass weitere Transportmechanismen f{\"u}r den Efflux von Nitrat in das Xylem existieren m{\"u}ssen. Im Rahmen dieser Doktorarbeit konnte das SLAC1-Homolog 2 (SLAH2) funktionell in Xenopus Oozyten exprimiert werden. Mit Hilfe der BIFC-Methode wurde gezeigt, dass dabei die Interaktion mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 essentiell ist. Elektrophysiologische Experimente verdeutlichten, dass SLAH2 einen Nitrat-selektiven S-Typ-Anionenkanal repr{\"a}sentiert, dessen Aktivit{\"a}t gleichzeitig durch die Anwesenheit eben dieses Anions im externen Medium reguliert wird. Durch die Promoter:GUS-Technik gelang es, die Lokalisation von SLAH2 exklusiv in den Zellen der Wurzelstele von Arabidopsis nachzuweisen. Aufgrund des stark negativen Membranpotentials pflanzlicher Zellen und der vorliegenden Anionengradienten, d{\"u}rften Anionenkan{\"a}le in erster Linie den Ausstrom von Anionen vermitteln. Da in Nitrat-Aufnahme-Experimenten an SLAH2-Verlustmutanten, im Vergleich zu Wildtyp-Pflanzen, ein geringerer Nitratgehalt im Spross, dagegen eine h{\"o}here Konzentration dieses Anions in den Wurzeln zu detektieren war, scheint der S-Typ-Anionenkanal SLAH2 am Transport von Nitrat aus den Wurzeln in die Bl{\"a}tter beteiligt zu sein. Dabei k{\"o}nnte er entweder direkt an der Beladung des Xylems mit Nitrat mitwirken, oder diese durch seine potentielle Funktion als Nitratsensor regulieren.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Scherzer2012, author = {Scherzer, S{\"o}nke}, title = {Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Arbeit sollte zun{\"a}chst die Frage gekl{\"a}rt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abh{\"a}ngigkeit der Anionenstr{\"o}me in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abh{\"a}ngigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenstr{\"o}me detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die gr{\"o}ßte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gest{\"u}tzt, da OST1 und CPK23 die st{\"a}rkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Str{\"o}me im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabh{\"a}ngigen und durch CPKs auf dem Ca2+-abh{\"a}ngigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abh{\"a}ngigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinit{\"a}ten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abh{\"a}ngigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom {\"u}ber das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abh{\"a}ngigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration f{\"u}hrt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, ben{\"o}tigen diese einen {\"u}bergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung f{\"u}hrt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivit{\"a}t durch Autophosphorylierung wieder her. Die stark Ca2+-abh{\"a}ngigen Kinasen CPK3 und 21 ben{\"o}tigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen f{\"u}hrt zur Depolarisation der Membran woraufhin der ausw{\"a}rtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entl{\"a}sst. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich.}, subject = {Schließzelle}, language = {de} } @phdthesis{Krause2012, author = {Krause, Diana}, title = {Transport der Hauptosmotika an der vakuol{\"a}ren Membran von Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen der vorliegenden Arbeit wurden neue Einblicke bez{\"u}glich des Transport-prozesses vakuol{\"a}rer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-str{\"o}me an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpstr{\"o}me konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollst{\"a}ndig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandene ATPase-Aktivit{\"a}t auf. Die vakuol{\"a}re Pyrophosphatase-Aktivit{\"a}t der vha-a2-vha-a3-Mutante war mit dem WT vergleichbar und konnte die verminderten Pumpstr{\"o}me der V-ATPase nicht kompensieren. Zudem wurde an A. thaliana WT-Pflanzen die Expressionsrate und Pumpstromdichte der V-ATPase von Schließzellen und Mesophyllzellen untersucht. Dabei konnte bei Schließzellen eine h{\"o}here Expressionsrate sowie Pumpleistung im Vergleich zu Mesophyllzellen detektiert werden, wodurch an der vakuol{\"a}ren Membran von Schließzellen eine starke protonenmotorische Kraft generiert werden kann. 2. Des Weiteren wurden die Transporteigenschaften des im Tonoplasten lokalisierten Transportproteins AtINT1 an Arabidopsis Mesophyllzellen des Wildtyps n{\"a}her untersucht. Unter inversen pH-Wert-Bedingungen konnte AtINT1 als Symporter identifiziert werden, welcher myo-Inositol H+-gekoppelt aus der Vakuole in das Cytosol transportiert. 3. {\"U}berdies wurde eine elektrophysiologische Charakterisierung des AtSUC4-Transporters durchgef{\"u}hrt. Unter einem physiologischen Protonengradienten konnte bei WT- und Atsuc4.1-Vakuolen ausschließlich ein Saccharose/H+ ge-triebener Antiportmechanismus detektiert werden. Im Gegensatz dazu zeigten 60 \% der AtSUC4-{\"U}E unter inversen pH-Gradienten w{\"a}hrend Saccharose-Applikation Str{\"o}me, die auf einen Saccharose/H+-Symportmechanismus hinweisen. Bei der Atsuc4.1-Verlustmutante hingegen konnten unter gleichen L{\"o}sungsbedingungen ausschließlich Str{\"o}me detektiert werden, die mit einem Saccharose/H+-gekoppelten Antiportmechanismus in Einklang zu bringen sind. Durch die Erkenntnisse der Arbeitsgruppe unter Norbert Sauer, Universit{\"a}t Erlangen, wird die Vermutung untermauert, dass AtSUC4 Saccharose im Symport mit H+ aus der Vakuole in das Cytosol transportiert und somit eine Rolle bei der Remobilisierung der in der Vakuole gespeicherten Saccharose {\"u}bernimmt. 4. Dar{\"u}ber hinaus konnten Studien am nichtselektiven spannungsabh{\"a}ngigen „slow-vacuolar-channel" (SV-Kanal) von Arabidopsis Mesophyllvakuolen durchgef{\"u}hrt werden. Dabei wurde das 14-3-3-Protein GRF6 als regulatorisches Protein identifiziert, welches die SV-Kanalaktivit{\"a}t stark verringert. Die gain-of-function Mutante fou2 mit der Punktmutation D454N im TPC1-Kanalprotein zeigt abweichende Kanaleigenschaften zum WT auf. Das Aktivie-rungspotential des fou2-SV-Kanals liegt bei 30 mV negativeren Membranspan-nungen, was die Offenwahrscheinlichkeit des SV-Kanals unter physiologischen Membranspannungen erh{\"o}ht. Die fou2-Mutation beeinflusst außerdem die luminale Ca2+-Bindestelle des SV-Kanals, wodurch die Affinit{\"a}t bzgl. luminalem Ca2+ geringer ist und die fou2-SV-Kanalaktivit{\"a}t bei hohen luminalen Ca2+-Konzentrationen bestehen bleibt. Die absolute Offenwahrscheinlichkeit des WT-SV-Kanals nimmt mit Ans{\"a}uern des vakuol{\"a}ren Lumens im Gegensatz zum fou2-SV-Kanal stark ab, die Einzelkanalleitf{\"a}higkeit des WT- als auch des fou2-SV-Kanals dagegen zu. Anhand der durchgef{\"u}hrten Messungen konnte eine regulatorische, vakuol{\"a}r gelegene Ca2+-Bindestelle des TPC1-kodierten Kanals lokalisiert und charakterisiert werden, welche sich vermutlich nahe am Spannungssensor befindet und unter physiologischen Membranspannungen einen einw{\"a}rtsgerichteten Kationenstrom erm{\"o}glicht. 5. Ferner wurden SV-Kan{\"a}le von Schließzellen untersucht und deren spezifische Eigenschaften mit Mesophyll-SV-Kan{\"a}len verglichen. In Schließzellen liegt neben einer erh{\"o}hten Transkriptmenge des single-copy Gens TPC1 eine h{\"o}here Stromdichte des SV-Kanals vor. Unter einw{\"a}rtsgerichtetem K+-Gradienten liegt das Aktivierungspotential von Schließzell-SV-Kan{\"a}le um 30 mV negativer als bei Mesophyllvakuolen, was unter physiologischen Membranspannungen zu einem ausgepr{\"a}gtem K+-Einstrom f{\"u}hrt. Dar{\"u}ber hinaus zeigte der Schließzell-SV-Kanal eine h{\"o}here Permeabilit{\"a}t von Na+- gegen{\"u}ber K+-Ionen (1,3:1) auf. W{\"a}hrend Schließzell- und Mesophyll-SV-Kan{\"a}le eine vergleichbare luminale Ca2+-Sensitivit{\"a}t aufweisen, zeigen Schließzell-SV-Kan{\"a}le eine h{\"o}here cytosoli-sche Ca2+- und vakuol{\"a}re pH-Sensitivit{\"a}t auf. Sequenzanalysen der TPC1-cDNA zeigten, dass die Zelltypspezifischen Unterschiede des SV-Kanals nicht durch posttranskriptionale Modifikation hervorgerufen werden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Mumm2010, author = {Mumm, Patrick}, title = {Elektrophysiologische Untersuchungen der Ionenfl{\"u}sse und ihrer Regulation in Stomakomplex-bildenden Zellen von Zea mays und Schließzellen von Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49267}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {1. Im Rahmen dieser Arbeit konnten neue Erkenntnisse hinsichtlich des angenomme-nen gerichteten Ionentransports zwischen Schließ- und Nebenzellen von Zea mays gewonnen werden: a. Mittels der Patch-Clamp-Technik wurden in beiden Zelltypen S-Typ-{\"a}hnliche Anionenkan{\"a}le identifiziert. In Nebenzellen konnten sie durch steigende zytosolische Ca2+-Konzentrationen gehemmt und durch ABA und zytosolische Alkalisierung stimuliert werden. Die S-Typ-Anionenkan{\"a}le der Schließzellen wurden hingegen durch eine Alkalisierung kaum beeinflusst und durch steigende zytosolische Ca2+-Konzentrationen stimuliert. b. Dar{\"u}ber hinaus konnte an intakten Mais-Pflanzen mit der Einstich-Elektroden-Technik gezeigt werden, dass Nebenzellen eine gegenl{\"a}ufige Polarisation des Membranpotentials w{\"a}hrend der Licht-/Dunkel-induzierten Stomabewegung aufweisen. Da das Membranpotential der Nebenzellen von Hordeum vulgare ein zu Mais {\"a}hnliches Verhalten w{\"a}hrend der Stomabewegung zeigte und gegenl{\"a}u-fig zur Membranpolarisation der benachbarten Schließzellen war, ist ein {\"a}hnli-ches Verhalten bei Zea mays Schließzellen naheliegend. c. Zudem wurde in intakten Nebenzellen von Zea mays eine zytosolische Alkali-sierung w{\"a}hrend der Licht-induzierten Stoma{\"o}ffnung beobachtet, die bei Stomaschluss wieder auf den Ursprungswert zur{\"u}ckkehrte. d. Mit Hilfe rekonstruktierter 3D-Modelle von intakten Mais-Stomakomplexen konnte ein Volumenverh{\"a}ltnis zwischen Schließ- und Nebenzellen von 1:6 bzw. 1:4 bei ge{\"o}ffneten und geschlossenen Stomata ermittelt werden. Unter Einbeziehung der Vorarbeiten unserer Arbeitsgruppe konnten die hier gewon-nenen Erkenntnisse schl{\"u}ssig in ein Modell zur Beschreibung des Shuttle-Ionentransports zwischen Neben- und Schließzellen w{\"a}hrend der Licht-induzierten Stomabewegung eingebunden werden. 2. Des Weiteren wurden die S-Typ-Anionenstromantworten von A. thaliana Schließ-zellen in Patch-Clamp-Experimenten n{\"a}her untersucht. Dabei waren die S-Typ-Anionenstr{\"o}me bei Ca2+- bzw. ABA-Stimulation in CPK23- und OST1-Verlustmutanten im Vergleich zum Wildtyp stark reduziert. Diese in vivo generierten Daten untermauern die in vitro Ergebnisse der Arbeitsgruppe von Prof. R. Hedrich (Universit{\"a}t W{\"u}rzburg), dass OST1 und CPK23 Interaktionspartner des S-Typ-Anionenkanals SLAC1 in A. thaliana sind. Das SLAC1-homologe Gen SLAH3 ko-diert f{\"u}r einen Nitrat-permeablen S-Typ-Anionenkanal in Schließzellen, der zudem durch externes Nitrat aktiviert wird. Da in slac1-3 Verlustmutanten S-Typ-{\"a}hnliche Anionenstr{\"o}me generiert werden konnten, wenn Nitrat das dominierende Anion dar-stellte oder den Chlorid-basierten L{\"o}sungen externes Nitrat zugegeben wurde, scheint SLAH3 unter bestimmten Bedingungen einen alternativen Weg f{\"u}r die Ent-lassung von Anionen aus der Schließzelle darzustellen. 3. Die elektrophysiologische Charakterisierung der R-Typ-Anionenkan{\"a}le in A. thaliana Schließzellen belegt, dass dieser Kanal {\"a}hnliche Grundcharakteristika aufweist, die schon in Vicia faba beschrieben wurden: eine starke Spannungsab¬h{\"a}ngigkeit, sowie schnelle Aktivierungs- und Deaktivierungskinetiken. Im Gegensatz zu Vicia faba wurde die Spannungsabh{\"a}ngigkeit dieses Kanaltyps in A. thaliana nicht durch externes Malat beeinflusst. Jedoch war unter externen Malatbedingungen die Stromantwort einer almt12-Verlustmutante im Vergleich zu Wildtyp-Schließzellen erheblich reduziert, w{\"a}hrend unter externen Sulfatbe¬dingungen keine Unterschiede zwischen Wildtyp und almt12-Verlustmutante auszu¬machen waren. ALMT12 scheint demnach f{\"u}r den Malat-aktivierten Teil des R-Typ-Anionenkanals verantwortlich zu sein.}, subject = {Schließzelle}, language = {de} } @phdthesis{Stange2010, author = {Stange, Annette}, title = {Beziehung zwischen Ca2+-Hom{\"o}ostase und Aktivit{\"a}t der S-Typ Anionenkan{\"a}le in Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52131}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Pflanzen regulieren ihren Gasaustausch mit der Atmosph{\"a}re, indem sie die {\"O}ffnungsweite von Poren in der Epidermis von Bl{\"a}ttern, sog. Stomata, ver{\"a}ndern. Bei Wassermangel werden die stomat{\"a}ren Poren geschlossen, um den Verlust von Wasser zu minimieren. Dieser Vorgang wird durch das Phytohormon ABA ausgel{\"o}st, welches eine Aktivierung von Anionenkan{\"a}len in der Plasmamembran der Schließzellen induziert. Obwohl die Aktivierung der Anionenkan{\"a}le ein zentrales Element in der ABA-Antwort darstellt, ist der Signalweg, der zu der Aktivierung der Anionenkan{\"a}le f{\"u}hrt, nur l{\"u}ckenhaft verstanden. Im Rahmen dieser Arbeit wurde die Rolle von Signalintermediaten wie Proteinkinasen, -phosphatasen, Lipid-abgeleiteten Botenstoffen und Ca2+ bei der Aktivierung der Anionenkan{\"a}le untersucht. Hinsichtlich Ca2+ lag ein spezieller Fokus auf der Generierung von Ca2+-Signalen und auf der Frage, inwieweit ein Anstieg in der cytosolischen freien Ca2+-Konzentration f{\"u}r eine Aktivierung der Anionenkan{\"a}le ausreicht. F{\"u}r diese Studien wurde haupts{\"a}chlich die Zwei-Elektroden-Spannungsklemm- (DEVC) Technik in Kombination mit Ca2+-Konzentrationsmessungen durch den Ca2+-sensitiven Farbstoff FURA-2 angewendet. Die M{\"o}glichkeit Anionenkan{\"a}le durch Ca2+ zu aktivieren wurde getestet, indem Ca2+-Signale in intakten Schließzellen von Nicotiana tabacum durch hyper- und depolarisierte Spannungen ausgel{\"o}st wurden und gleichzeitig die Str{\"o}me, die {\"u}ber die Plasmamembran flossen, gemessen wurden. Dabei f{\"u}hrte eine Hyperpolarisation zu einer transienten Erh{\"o}hung der cytosolischen freien Ca2+-Konzentration w{\"a}hrend des Spannungssprunges, wohingegen eine Depolarisation zun{\"a}chst eine Erniedrigung der cytosolischen freien Ca2+-Konzentration ausl{\"o}ste und das Ca2+-Signal bei Repolarisation der Plasmamembran auftrat. Dies weist darauf hin, dass in beiden F{\"a}llen hyperpolarisations-aktivierte Ca2+-Kan{\"a}le beteiligt sind, wobei das Schwellenpotential der Schließzellen, bei dem ein Ca2+-Signal ausgel{\"o}st wird, nach einer langen Depolarisation zu positiveren Spannungen verschoben ist. Die Modulation der Spannungssensitivit{\"a}t der Schließzellen w{\"a}hrend einer langen Depolarisation findet m{\"o}glicherweise durch eine Aktivierung der Ca2+-Kan{\"a}le und/oder eine Inhibierung verschiedener Ca2+-Transportproteine durch eine niedrige cytosolische freie Ca2+-Konzentration statt. Der durch Hyperpolarisation bzw. durch lange Depolarisation induzierte transiente Anstieg in der cytosolischen freien Ca2+-Konzentration korrelierte mit einer transienten Aktivierung von S-Typ Anionenkan{\"a}len. Die Analyse der Ca2+-Konzentrations- und Zeitabh{\"a}ngigkeit ergab, dass die S-Typ Anionenkan{\"a}le durch Ca2+ in einem schnellen Signalweg mit einer halbmaximalen cytosolischen freien Ca2+-Konzentration von 515 nM (SE=235, n=33) aktiviert werden. Der durchschnittliche maximale S-Typ Anionenstrom lag bei -349 pA (SE=107, n=33) bei einer Spannung von -100 mV. Die Wirkung von Ca2+ auf Transportvorg{\"a}nge {\"u}ber die Plasmamembran wurde auch in Dr{\"u}senzellen von Dionaea muscipula untersucht. In diesem Zelltyp induzierte eine mechanische Stimulierung der Triggerhaare ein Ca2+-Signal, wobei mehr als zwei Aktionspotentiale n{\"o}tig waren, um einen transienten Ca2+-Anstieg auszul{\"o}sen. Diese Daten zeigen, dass die Depolarisationsphase des Aktionspotentials in den Dr{\"u}sen nicht direkt mit Ca2+-Fl{\"u}ssen assoziiert ist. Anstelle einer Ca2+-abh{\"a}ngigen Aktivierung scheinen Anionenkan{\"a}le in Dr{\"u}sen von Dionaea muscipula also in einem Ca2+-unabh{\"a}ngigen Signalweg aktiviert zu werden. Diesen Aktivierungsmechanismus gibt es auch im ABA-Signalweg in Schließzellen. Dort findet eine Ca2+-unabh{\"a}ngige Aktivierung der S-Typ Anionenkan{\"a}le durch Proteinkinasen wie OST1 und CPK23 statt, wobei die Proteinphosphatase ABI1 als negativer Regulator diskutiert wird. In dieser Arbeit konnte die Redundanz von OST1 und CPK23 sowie Komponenten des Ca2+-abh{\"a}ngigen Weges in DEVC-Experimenten mit ost1-2- und cpk23-Mutanten von Arabidopsis thaliana beobachtet werden, die beide S-Typ Anionenkanalaktivit{\"a}t zeigten. Die Aktivit{\"a}t von S-Typ Anionenkan{\"a}len in Arabidopsis thaliana Mutanten, denen der S-Typ Anionenkanal SLAC1 fehlt, deutet außerdem an, dass redundante S-Typ Anionenkan{\"a}le vorhanden sind, die auch durch andere Proteinkinasen aktiviert werden k{\"o}nnten. ABA-induzierte S-Typ Anionenstr{\"o}me waren auch in abi1-Transformanten von Nicotiana tabacum messbar, wobei eine geringere Sensitivit{\"a}t gegen{\"u}ber ABA als im Wildtyp auftrat, was auf eine unvollst{\"a}ndige Inhibierung des ABA-Signalweges hindeutet. Die Redundanz der Intermediate im ABA-Signalweg war auch in Studien mit dem Lipid-abgeleiteten Botenstoff Phosphatids{\"a}ure sichtbar, der nur einen langsamen und unvollst{\"a}ndigen Stomaschluss induzierte, was allerdings auch auf eine untergeordnete Rolle von Phosphatids{\"a}ure im ABA-Signalweg hinweisen k{\"o}nnte.}, subject = {Schließzelle}, language = {de} } @phdthesis{Konrad2008, author = {Konrad, Kai Robert}, title = {Untersuchung zu den fr{\"u}hen ABA-induzierten elektrischen Reaktionen in Schließzellen von Vicia faba}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27216}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Im Rahmen der vorliegenden Arbeit wurde die Perzeption und fr{\"u}he Signaltransduktion des Phytohormons ABA in Schließzellprotoplasten von Vicia faba mittels der Patch-Clamp-Technik untersucht. Es wurde entdeckt, dass der ABA-Signaltransduktionskette zur Aktivierung von Plasmamembran-st{\"a}ndigen Anionenkan{\"a}len voraussichtlich eine Proteinkinase beinhaltet und durch eine cytosolische ABA-Perzeption ausgel{\"o}st wird. Die durch ABA-bewirkte Anionenkanal-Aktivierung verursacht in Schließzellen eine Plasmamembran-Depolarisation. Basierend auf der ABA-induzierten Schließzellen-Depolarisation wurde zudem eine Methode etabliert, um mit dem Spannungs-sensitiven Farbstoff DiBAC4(3) in Populationen von intakten Vicia faba-Schließzellprotoplasten Membranpotential-{\"A}nderungen zu quantifizieren.}, subject = {Schließzelle}, language = {de} } @phdthesis{Steinmeyer2005, author = {Steinmeyer, Ralf}, title = {Untersuchungen und Simulationen zur Koordination der Ionenfl{\"u}sse bei der Schließzellbewegung in Vicia faba und Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Trotz der bereits lange gut bekannten Funktion der Stomata und der einzelnen, an der Funktion beteiligten Transportproteine, fehlen Funktionsmodelle, die diese schließzellspezifsch in einen Zusammenhang bringen und ihre Koordination untersuchen. Ergebnisse - Der einw{\"a}rts gleichrichtende Kaliumkanal aus Arabidopsis thaliana, KAT1 ist sowohl molekularbiologisch, als auch elektrophysiologisch gut charakterisiert. Ein „ausschalten" dieses Kanals sollte die Stoma{\"o}ffnung deutlich verlangsamen oder vermindern. Es wurde aber unter verschiedenen Bedingungen, weder mit Licht als {\"O}ffungsreiz, noch mit Fusicoccin, kein Unterschied zwischen Wildtyp und KAT1::En-1 Mutante gefunden. - Einige Publikationen schlagen Zucker, vornehmlich Glukose als osmotisch aktive Substanz zur Stoma{\"o}ffnung vor, da im Tagesgang bei l{\"a}ngerer Stoma{\"o}ffnung auch die Zuckerkonzentration zunimmt. Die Zuckeraufnahme wurde mit einem fluoreszierenden Glukose-Derivat gemessen und als lichtabh{\"a}ngig gefunden. Weiterhin wurde die Aufnahme besonders durch CCCP gehemmt, was auf eine Abh{\"a}ngigkeit von einem Protonengradienten hindeutet. - Die Aufnahme von Glukose wurde weiterhin mit einer Knockout-Mutante des AtSTP1 Protonen/Zucker-Kotransporters getestet. Die deutliche Verminderung des Anteils der fluoreszierenden Zellen gegen{\"u}ber dem Wildtyp unter den gleichen Bedingungen zeigt eine Beteiligung dieses Kotransporters an der Glukose-Aufnahme. - Schließzellen in der intakten Pflanze wurden auf den Verlauf ihres Membranpotentials in CO2-freier Luft bei Licht/Dunkel Wechseln untersucht. Ein großer Teil dieser Zellen zeigte eine wiederholbare Hyperpolarisation im Licht und Depolarisation im Dunklen. Als Ausl{\"o}ser dieser {\"A}nderung in der Membranspannung wurde haupts{\"a}chlich die (In-)Aktivierung eines instantanen positiven Stromes in der Gr{\"o}ß{\"y}e von etwa 35 pA festgestellt, vermutlich die H+-ATPase. - Die Abh{\"a}ngigkeiten des Anionenkanals, der einw{\"a}rts und ausw{\"a}rts gleichrichtenden Kaliumkan{\"a}le und der Protonenpumpe von internen und externen Ionenkonzentrationen, dem pH-Wert und der Membranspannung wurden in einer biophysikalischen Simulation vereint. Zusammen mit den jeweiligen Leitf{\"a}higkeiten und Literaturdaten der Konzentrationsverl{\"a}ufe ergibt sich ein realistisches Modell der Fl{\"u}sse zur Stomabewegung. - Aus dem Modell ergeben sich zwei wesentliche Voraussagen f{\"u}r das Zusammenwirken der Transportproteine: 1. Bei der Stoma{\"o}ffnung muss die H+-ATPase zur Beendigung der {\"O}ffnung wieder deaktiviert werden, anderenfalls steigt die interne Kaliumkonzentration und das Membranpotential f{\"a}llt auf Werte, die in Messungen nie gefunden wurden. Eine Desensitisierung der H+-ATPase wurde zwar nach Blaulicht-Pulsen bereits gemessen, jedoch nicht bei andauernder Beleuchtung. 2. Der bisher in Schließzellen noch nicht elektrophysiologisch nachgewiesene Protonen/Chlorid Kotransporter zum Import von Chlorid muss nicht nur w{\"a}hrend der Stoma{\"o}ffnung aktiv sein, sondern erh{\"a}lt auch eine Rolle beim Stomaschluss. Da die cytosolische Chloridkonzentration deutlich unter der von Kalium liegt, w{\"u}rde die f{\"u}r den Efflux der beiden Ionen n{\"o}tige Depolarisation bereits enden, wenn die Chloridkonzentration deutlich sinkt, also bevor auch die Konzentration von Kalium soweit abgenommen h{\"a}tte, dass die Spalt{\"o}ffnung geschlossen w{\"a}re. - Zur Messung interner Ionenkonzentrationen in intakten Schlie{\"y}zellen wurden verschiedene Methoden der Beladung mit fluoreszierenden Indikatorfarbsto\#en getestet. Die Beladung durch niedrigen pH, niedrige Temperatur oder der Farbstoffe als Acetoxymethyl-Ester kann bei Schließzellen von Vicia faba als nicht praktikabel angesehen werden. Lediglich eine Detergenz unterst{\"u}tzte Farbstoffbeladung wurde in der Literatur gefunden. - Zur parallelen Anwendung elektrophysiologischer Messungen und fluoreszenzbasierter Bestimmung von Ionenkonzentrationen wurde eine Technik der Druckinjektion {\"u}ber einen Kanal einer Doppel-Elektrode getestet. Diese Methode erlaubt die Farbstoffinjektion, allerdings hat sich die Spannungs-Klemm-Technik mit der f{\"u}r einen einzelnen Kanal einer Einstichelektrode notwendigen gepulsten Technik als nicht praktikabel erwiesen, da die Membranspannung vermutlich aufgrund nicht kompensierbarer Kapazit{\"a}ten nicht die vorgegebenen Werte erreichte.}, subject = {Ackerbohne}, language = {de} }