@phdthesis{Semmel2010, author = {Semmel, Julia Birgit}, title = {Herstellung von Quantenkaskadenlaserstrukturen auf InP und Entwicklung alternativer Bauteilkonzepte f{\"u}r den monomodigen Betrieb}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Das zentrale Thema der vorliegenden Arbeit ist die Konzeptionierung und Charakterisierung verschiedener innovativer Bauteildesigns zur Optimierung der spektralen sowie elektro-optischen Eigenschaften von Quantenkaskadenlasern. Die Quantenkaskadenlaserschichten, die diesen Konzepten zu Grunde liegen wurden im Rahmen dieser Arbeit mittels Molekularstrahlepitaxie hergestellt und optimiert. Diese Optimierung machte auch die Realisierung von Dauerstrichbetrieb m{\"o}glich. Dazu werden zun{\"a}chst die grundlegenden Eigenschaften von den in dieser Arbeit verwendeten III-V-Halbleitern sowie des InP-Materialsystems erl{\"a}utert. F{\"u}r diese Arbeit ist dabei die Kombination der beiden tern{\"a}ren Verbindungshalbleiter InGaAs und InAlAs in einer Halbleiterheterostruktur von zentraler Bedeutung, aus denen die aktive Zone der hier vorgestellten Quantenkaskadenlaser besteht. Basierend auf dem zweiten Kapitel wird dann im dritten Kapitel auf das Zusammenspiel der einzelnen konkurrierenden strahlenden und nicht strahlenden Streuprozesse in einer Quantenkaskadenlaserstruktur eingegangen. Dabei wird die prinzipielle Funktionsweise eines solchen komplexen Systems an Hand eines 3-Quantenfilm-Designs erl{\"a}utert. Das vierte Kapitel besch{\"a}ftigt sich mit der Herstellung und Grundcharakterisierung der Laserstrukturen. Dabei wird kurz das Konzept der Molekularstrahlepitaxie erkl{\"a}rt sowie der Aufbau der verwendeten Anlage beschrieben. Da ein Betrieb der Bauteile im Dauerstrichbetrieb deren Anwendbarkeit in vielen Bereichen verbessert, wird im f{\"u}nften Kapitel an Hand eines ausgew{\"a}hlten Strukturdesigns der Weg bis hin zur Realisierung des Dauerstrichbetriebs beschrieben. Des Weiteren wird auf einen besonderen Prozess zur Verbesserung der W{\"a}rmeleitf{\"a}higkeit der fertigen Bauteile eingegangen. Dieser sogenannte Doppelkanal-Stegwellenleiter-Prozess zeichnet sich dadurch aus, dass der entstehende Lasersteg seitlich durch zwei nasschemisch ge{\"a}tzte Gr{\"a}ben begrenzt wird.Die letzten drei Kapitel besch{\"a}ftigen sich mit verschiedenen Bauteilkonzepten zur Optimierung der spektralen sowie elektro-optischen Eigenschaften der Quantenkaskadenlaser. In Kapitel sechs werden dabei Mikrolaser mit tiefge{\"a}tzten Bragg-Spiegeln zur Realisierung von monomodigem Betrieb vorgestellt. Im folgenden Kapitel werden Laser mit aktiven gekoppelten Ringresonatoren vorgestellt. Der gekoppelte Ring funktioniert dabei als Filter nach dem Vernier-Prinzip und erm{\"o}glicht so monomodigen Betrieb. Im letzten Kapitel stehen schließlich Quantenkaskadenlaser mit trapezf{\"o}rmigem Verst{\"a}rkungsbereich im Mittelpunkt. Ziel dieses Teils der vorliegenden Arbeit war es die Ausgangsleistung der Bauteile zu erh{\"o}hen und dabei gleichzeitig die Fernfeldeigenschaften zu verbessern.}, subject = {Quantenkaskadenlaser}, language = {de} } @phdthesis{Gerschuetz2010, author = {Gersch{\"u}tz, Florian}, title = {GaInAs/AlGaAs-Quantenpunktlaser f{\"u}r Telekommunikationsanwendungen mit einer Wellenl{\"a}nge von 1,3 μm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die vorliegende Arbeit befasst sich mit verschiedenen, neuartigen Quantenpunkthalbleiterlasern f{\"u}r Telekommunikationsanwendungen im Wellenl{\"a}ngenbereich um 1,3 μm. Dabei stellen diese Bauteile jeweils die besten in der Literatur zu findenden Quantenpunktlaser bei dieser Wellenl{\"a}nge dar. Die hervorragende Eignung dieser Laser f{\"u}r Telekommunikationsanwendungen mit signifikant verbesserten Eigenschaften gegen{\"u}ber Quantenfilmlasern wird im Verlauf der Arbeit mehrfach demonstriert. Bei der Darstellung der unterschiedlichen Arten von Quantenpunktlasern und ihrer Eigenschaften wird zuerst auf deren Herstellung eingegangen, die sich teilweise in wesentlichen Punkten unterscheidet. Bei der Charakterisierung der Lasereigenschaften wird zwischen den statischen und den dynamischen Eigenschaften unterschieden. Besonderheiten werden jeweils anhand theoretischer Modelle erl{\"a}utert und herausgearbeitet. Außerdem zeigt sich, dass alle Laser - entweder im Hinblick auf ihre statischen oder dynamischen Eigenschaften - Bestwerte f{\"u}r Quantenpunktlaser erzielen. Speziell gelingt es, eine bisher unerreichte Temperaturstabilit{\"a}t zu erreichen. So kann erstmals an einem Rippenwellenleiterlaser ohne R{\"u}ckkopplungsgitter eine negative charakteristische Temperatur bei Raumtemperatur demonstriert werden: Zwischen 25°C und 45° liegt der T0-Wert bei -190 K, der Schwellenstrom reduziert sich von 14 mA auf 13 mA. Oberhalb von 45°C zeigt der Laser mit T0=2530 K ebenfalls ein ausgezeichnetes Temperaturverhalten, das bisher an keinem anderen Laser - weder Quantenpunkt- noch Quantenfilmlaser - demonstriert werden konnte. In diesem Temperaturbereich (45°C - 85°C) ist die Laserschwelle nahezu konstant bei 13 mA. Hinzu kommt die hohe Ausgangsleistung von {\"u}ber 20 mW f{\"u}r Str{\"o}me kleiner als 40 mA bei allen Messtemperaturen. Dar{\"u}ber hinaus erreichen die FP-Laser bei der Kleinsignalmodulation mit 8,6 GHz bei 25°C neue Rekordwerte. Diese Ergebnisse werden erst durch eine hochwertige p- Modulationsdotierung erm{\"o}glicht, deren Einfluss und Wirkung ebenfalls erl{\"a}utert werden. Das Material f{\"u}r diese Laser wurde in vielen Schritten aufw{\"a}ndig optimiert. Die DFB-Laser stellen die ersten longitudinal monomodigen Bauteile dieser Arbeit dar. Auch diese Laser verf{\"u}gen {\"u}ber ausgezeichnete Temperatureigenschaften und erreichen bei der Kleinsignalmodulation mit 7,8 GHz bei 25°C einen neuen Bestwert f{\"u}r Quantenpunkt-DFB-Laser. Noch bedeutender sind allerdings die Ergebnisse der Großsignalmodulation: So kann erstmals temperaturunabh{\"a}ngige 10 Gbit/s-Direktmodulation im Temperaturbereich von 25°C bis 85°C {\"u}ber 20 km bei konstantem Betriebspunkt erreicht werden. Dies demonstriert das große Potential dieser Bauteile f{\"u}r einen Einsatz in Lasermodulen ohne thermoelektrischen K{\"u}hler, was durch die damit verbundene Reduzierung der Kosten in der Praxis große Bedeutung hat. Um die Bandweite auf Quantenpunktmaterial noch weiter zu erh{\"o}hen, werden Complex- Coupled-Injection-Grating-Laser untersucht. Diese Laser bestehen aus drei Segmenten und nutzen ein neuartiges Konzept zur Erh{\"o}hung der Bandweite: Durch die Wechselwirkung verschiedener Longitudinalmoden kann eine h{\"o}here Resonanz im Laser, die Photon-Photon-Resonanz, ausgenutzt werden, um die Bandweite des Bauteils auf etwa das zweieinhalbfache der vorgestellten FP-Lasers auszuweiten. Zum ersten Mal wird so eine Modulationsweite von 20 GHz an einem direkt modulierten Laser auf Quantenpunktbasis gezeigt. Durch getrenntes Ansteuern der drei Lasersegmente ist es m{\"o}glich, die Lage und die Form der PPR gezielt einzustellen. Die drei Segmente {\"u}bernehmen dabei unterschiedliche Funktionen: W{\"a}hrend das Verst{\"a}rkungssegment nur dazu dient, die Ausgangsleistung zu kontrollieren, kann {\"u}ber das Gittersegment die Position der zweiten Resonanz gesteuert werden. Strominjektionen in das Phasensegment schließlich erlauben eine Feinabstimmung der Phasenlage der Moden im Laser und somit die Steuerung der Form der Photon-Photon-Resonanz. Bei der Pr{\"a}sentation der Großsignaldaten zeigt sich, dass der CCIGLaser sowohl bei 25°C als auch bei 85°C eine Modulationsgeschwindigkeit von 10 GBit/s erreicht und zur Transmission {\"u}ber ein Glasfaserkabel von 20 km L{\"a}nge geeignet ist. Wie schon der DFBLaser ben{\"o}tigt auch das CCIG-Bauteil aufgrund seiner hervorragenden Temperaturstabilit{\"a}t keinen thermoelektrischen K{\"u}hler. Wegen des {\"a}ußerst sensiblen Verhaltens der Phasenlage auf Strom{\"a}nderungen ist jedoch eine Anpassung der Betriebsparameter an die jeweilige Temperatur notwendig. Schließlich werden weit abstimmbare Quantenpunktlaser vorgestellt, die auf eigens hierf{\"u}r optimiertem Material mit spektral breiter Verst{\"a}rkungscharakteristik prozessiert wurden. Diese Laser emittieren monomodig bei 1315 nm, 1335 nm, 1355 nm, 1375 nm und 1395 nm. Die Wellenl{\"a}nge l{\"a}sst sich durch einen einfachen Abstimmmechanismus diskret einstellen, eine kontinuierliche Feinabstimmung ist zus{\"a}tzlich m{\"o}glich. Mit diesen Eigenschaften eignen die Laser sich hervorragend f{\"u}r den Einsatz in CWDM-Systemen, deren Kanalabstand jeweils 20 nm betr{\"a}gt. Durch den breiten Abstimmbereich von 80 nm sind sie zudem als einzige bisher realisierte Laser in der Lage, f{\"u}nf unterschiedliche Kan{\"a}le anzusprechen. Dar{\"u}ber hinaus sind auch diese Bauteile f{\"u}r den kosteneffizienten Einsatz unter Direktmodulation ausgelegt. Obwohl auch diese Laser auf Quantenpunkten bei 1,3 μm basieren, sind die Anforderungen an das Material f{\"u}r einen abstimmbaren Laser andere als bei den bereits pr{\"a}sentierten Lasern. Besonders wichtig ist hier die Breite der Verst{\"a}rkungskurve, so dass ein m{\"o}glichst großer Spektralbereich abgedeckt werden kann. Hierzu konnte anhand eines Modells der Verst{\"a}rkungsbereich theoretisch bestimmt werden. Rechnerisch zeigt sich, dass Laseremission {\"u}ber einen Bereich von mehr als 60 nm m{\"o}glich ist. In der Praxis wird dieser Wert sogar noch um 20 nm {\"u}bertroffen, da die Rechnung die Rotverschiebung der Verst{\"a}rkungskurve mit der Temperatur nicht ber{\"u}cksichtigt. Mit den in dieser Arbeit vorgestellten Daten und Ergebnissen wird die hervorragende Eignung von Quantenpunklasern f{\"u}r verschiedenste Anwendungen im Telekommunikationsbereich gezeigt. Dar{\"u}ber hinaus zeigt sich in vielen wesentlichen Punkten die {\"U}berlegenheit dieser Laser {\"u}ber konventionelle Quantenfilmlaser. Somit konnte erfolgreich die Grundlage f{\"u}r zuk{\"u}nftige kommerzielle Anwendungen der Quantenpunkttechnologie gelegt werden.}, subject = {Quantenpunktlaser}, language = {de} } @phdthesis{Scherer2010, author = {Scherer, Helmut}, title = {Integration von aktiven und passiven optischen Bauelementen auf Basis photonischer Kristalle bei 1,3 und 1,5 μm Wellenl{\"a}nge}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52150}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Im Rahmen der Arbeit wurden Halbleiterlaser aus photonischen Kristallen (PK) im Wellenl{\"a}ngenbereich von 1,3 und 1,5 µm untersucht. Insbesondere die Integration der Laser mit weiteren Bauelementen f{\"u}r die optische Telekommunikation stand im Vordergrund der Untersuchungen. Neben den versch. Anwendungen unterscheidet sich auch das Grundmaterial. Der kurzwellige Bereich um 1,3 µm wurde auf GaAs-basierten Material bearbeitet, die langwelligen Laser wurden auf InP-Basis bearbeitet. Photonische Kristalle bestehen aus einer periodisch angeordneten Brechungsindexvariation zwischen Luftl{\"o}chern in einer Halbleitermatrixstruktur. Die Ausbreitung elektromagnetischer Wellen wird durch das periodische Potential beeinflusst und es k{\"o}nnen z. B. Spiegel hergestellt werden. Die Reflektivit{\"a}t kann durch Variation der PK-Struktur angepasst werden. Weiterhin k{\"o}nnen Liniendefekte als effektive Wellenleiter benutzt werden. Es wurden mehrstufige Y-Kombinierer zur Zusammenf{\"u}hrung der Emission mehrerer Laser auf der komplett aktiven Laserstruktur hergestellt. Die Definition der Bauteile erfolgte durch optische bzw. Elektronenstrahllithographie, die Strukturierung wurde mittels nass- und trockenchemischer {\"A}tzverfahren sichergestellt. Weiterhin wurden Stegwellenleiter basierte Mikrolaser auf GaInNAs-Material hergestellt. Um abstimmbare Laser mit einem m{\"o}glichst grossen Abstimmbereich herzustellen, wurden zwei Resonatoren mit unterschiedlicher L{\"a}nge hergestellt. Zwischen beide Resonatoren wurde ein PK-Spiegel aus 2 bzw. 3 Lochreihen prozessiert. Dies erm{\"o}glicht das Abstimmen der Laser von 1307 bis 1340 nm. Im weiteren Verlauf wurden aktive und passive PK-Strukturen auf GaAs-Basis integriert. Hierzu wurden DWELL-Strukturen auf Basis von InGaAs/GaAs Quantenpunkten verwendet. Durch das Ankoppeln der Glasfaser an die Frontfacette des Lasers ist der laterale Abstand der Laserstrukturen durch die Dicke der Glasfaser auf 250 µm festgelegt. Durch die verlustarme Kopplung mehrerer Laser in einen Auskoppelwellenleiter kann die Fl{\"a}chenausnutzung deutlich gesteigert werden. Im Rahmen der Arbeit wurden vier Halbleiterlaser {\"u}ber PK Wellenleiter miteinander verbunden. Die gezeigten Laserstrukturen weisen eine L{\"a}nge von unter 1,5 mm bei einer Gesamtbreite von 160 µm auf. Dies bedeutet, dass ein komplettes Modul schmaler als eine Glasfaser realisiert werden kann. Es konnte gezeigt werden, dass alle 4 Laser unabh{\"a}ngig von einander wellenl{\"a}ngenstabil ansteuerbar und abstimmbar sind. Die Seitenmodenunterdr{\"u}ckung im parallelen cw-Betrieb aller vier Laser liegt f{\"u}r den Laser mit der geringsten Seitenmodenunterdr{\"u}ckung immer noch bei mehr als 20 dB und der Leistungsunterschied zwischen den vier Lasern ist unter 2,5 dB. Weiterhin wurden PK-Strukturen bei einer Wellenl{\"a}nge von 1,5 µm auf einem InP-Basis untersucht. Im Bereich der passiven Charakterisierung wurden W3-Wellenleiter spektral vermessen. Zu Beginn wurde das sog. Ministopband (MSB) des W3-Wellenleiters untersucht, um im Anschluss die Kopplung von zwei Wellenleitern mit Hilfe des {\"U}bersprechens im Bereich des MSB´s zu analysieren. Hierzu wurden zwei W3-Wellenleiter parallel zueinander strukturiert. Im Wellenl{\"a}ngenbereich des MSB erfolgt eine {\"U}bertragung vom Referenz- in den Monitorkanal. Durch die geometrischen Parameter der PK-Strukturen kann die spektrale Lage und Breite des Filters eingestellt werden. Die Filterung durch {\"U}bersprechen vom Referenz- in den Monitorkanal ist mit einer spektralen Breite von mehr als 10 nm noch relativ breitbandig. Daher wurden PK-Resonatoren hergestellt. Hierzu wurden Spiegel in die Wellenleiter prozessiert. Es wurden Filter mit einer spektralen Breite von weniger als 0,5 nm und G{\"u}ten von {\"u}ber 9000 erreicht. Im Anschluss wurden die aktiven und passiven Bauteile auf einem Chip integriert. Die Laser erreichten eine max. Leistung von 28 mW. Die Integration zus{\"a}tzlicher Funktionen hinter den Laser bedeutet eine Erh{\"o}hung der Komplexit{\"a}t und des Funktionsumfangs, ohne die Emissionsleistung des Lasers zu senken. Zus{\"a}tzlich vereinfacht sich der Aufbau zur Charakterisierung und zum Betrieb der Laser. In den gezeigten Bauteilen wurde die durch den Laserr{\"u}ckspiegel transmittierte Lichtmode mittels eines Tapers in einen PK Wellenleiter gef{\"u}hrt. Seitlich und am Ende des Wellenleiters wurde die erreichte Intensit{\"a}t mittels zweier getrennter Photodioden (PD) gemessen. Damit wird das Konzept der passiv untersuchten Wellenleiter zusammen mit den Lasern integriert. Bei konstanter Leistung und Wellenl{\"a}nge m{\"u}ssen die beiden Photostr{\"o}me konstant sein. Durch die sehr kompakte Bauform am Ende des Lasers mit einer zus{\"a}tzlichen L{\"a}nge von weniger als 100 µm ist das Bauelement sehr Verlustarm. {\"A}ndert sich die Wellenl{\"a}nge ungewollt, so {\"a}ndert sich das Verh{\"a}ltnis der Str{\"o}me in den PD. F{\"u}r die Charakterisierung des Wellenl{\"a}ngenmonitors betr{\"a}gt der Abstimmbereich 30 nm.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Seufert2009, author = {Seufert, Mirjam}, title = {Herstellung und Charakterisierung von abstimmbaren und Hochleistungslasern auf GaSb}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52122}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Ziel dieser Arbeit war es, basierend auf dem AlGaIn-AsSb Materialsystem neuartige Laserbauelemente mit bisher unerreichten Kenndaten zu entwerfen, herzustellen und zu untersuchen. Der Fokus lag dabei zum Einen auf einer Steigerung der optischen Ausgangsleistung in Kombination mit einem monomodigen spektralen Emissionsverhalten. Zum anderen lag ein wesentliches Hauptaugenmerk auf der Realisierung von monomodig emittierenden Lasern mit einem weiten Wellenlaengenabstimmbereich.}, subject = {Abstimmbarer Laser}, language = {de} } @phdthesis{Brunner2005, author = {Brunner, Raimund}, title = {Analyse optischer Heterodynsignale zur dynamischen Charakterisierung von Diodenlasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die stetige Degradation von Halbleiterlasern, speziell bei Bleichalkogenidlasern, erfordert in spektroskopischen Systemen eine regelm{\"a}ßige {\"U}berwachung typischer Eigenschaften wie Abstimmcharakteristik und Linienbreite. Im Hinblick auf einen m{\"o}glichst hohen Automatisierungsgrad wird langfristig eine Online-Analysemethode zur {\"U}berwachung notwendig sein. Die {\"u}blicherweise verwendete Methode, den Laserarbeitspunkt {\"u}ber zugrunde liegende Modenkarten einzustellen, hat den gravierenden Nachteil, dass solche Modenkarten in der Regel nicht unter dynamischen Modulationsbedingungen vermessen wurden. Gerade im dynamischen Fall sind diese Karten empfindlich abh{\"a}ngig gegen{\"u}ber Ver{\"a}nderungen durch Zyklieren und Degradieren des Lasers. Etalons (Etalonsignale) sind bez{\"u}glich der Abstimmcharakteristik nicht zuverl{\"a}ssig genug und von daher f{\"u}r eine w{\"u}nschenswerte Automatisierung nicht ausreichen. Modenspr{\"u}nge oder schwache R{\"u}ckkopplungseffekte lassen sich im Interferogramm nicht ohne weiteres identifiziert. Eine erweiterte Analyse der St{\"o}rungen dieser Interferogramme im Zeit-Frequenzbereich mittels einer AOK(Adaptive Optimal Kernel)-Transformation erwies sich speziell bei Signalen mit wenigen Perioden als deutlich aussagekr{\"a}ftiger. Mittels optischer Homodynmischung wurde die Linienbreite von Bleichalkogenidlasern ermittelt. Bei inkoh{\"a}renter {\"U}berlagerung entspricht die spektrale Verteilung der Mischung der Faltung der urspr{\"u}nglichen Verteilung mit sich selbst. Der Laser wird dabei nicht abgestimmt, die optische Laufzeitverz{\"o}gerung wurde mittels integrierter White-Zelle realisiert. Es wurde beobachtet, dass je nach Grad des Rauschens des Injektionsstroms, das Linienbreitenprofil von Lorentz nach Gauß {\"u}berging. Mit einem externen CO2-Laser als lokalen Oszillator wurden Heterodynmessungen durchgef{\"u}hrt. Die Linienbreite eines CO2-Lasers ist mit wenigen kHz im Vergleich zu derjenigen eines Bleichalkogenidlasers vernachl{\"a}ssigbar und die {\"U}berlagerung erfolgt absolut inkoh{\"a}rent. Gemessen wurden spektrale Verteilungen mit typischem Lorentzprofil von 10 MHz bis zu 100 MHz und dar{\"u}ber hinaus. Auff{\"a}llig waren h{\"a}ufig symmetrische Nebenpeaks, die in den Bereichen der Seitenflanken des Lorentzprofils auftraten. Anhand einer numerischen Simulation eines Modells einer Laserdiode, basierend auf Ratengleichungen mit f{\"u}r Bleichalkogenidlasern typischen Parameterwerten, konnte verdeutlicht werden, dass sich durch das nichtlineare Lasermodell ausgepr{\"a}gte Vielfache von Resonanzen bereits im Abstand von 25 MHz ausbilden k{\"o}nnen. Derartige Resonanzen tauchen im E-Feld-Spektrum als typische Relaxationsoszillationen in den Seitenb{\"a}ndern wieder auf und erkl{\"a}ren die in der Messung beobachteten Nebenpeaks innerhalb der spektralen Verteilung. Die St{\"a}rke der Seitenb{\"a}nder ist ein Maß f{\"u}r die Korrelation zwischen Phasen- und Amplitudenfluktuationen. Das Modell f{\"u}r die numerische Berechnung des E-Feldes wurde mit einem thermischen Verhalten erweitert. Eine umfassende Charakterisierungsmethode zur automatisierten Einstellung eines modulierten Lasersystems muss dynamisch und zeitaufgel{\"o}st erfolgen. Die Auswertung optischer Mischfrequenzen beschr{\"a}nkt sich dabei nicht mehr auf die direkte Interpretation von einzelnen Spektren, sondern erweitert sich auf die Analyse im Zeit-Frequenzraum. F{\"u}r eine direkte und schnelle Zeitfrequenztransformation bietet sich ein „Gefensterte Fouriertransformation" (STFT) an, die sich außerdem relativ einfach in moderne Signalprozessortechnik implementieren l{\"a}sst. Sie erweist sich als sehr robust und f{\"u}r die hier erforderliche Analyse von Heterodynsignalen als ausreichend. Mit der Festlegung des Analysefensters innerhalb einer STFT ist die Aufl{\"o}sung in Zeit und Frequenz fest definiert. Analysen von Mischsignalen mit einer kontinuierlichen Wavelettransformation haben vergleichsweise gezeigt, dass Details im Zeitfrequenzraum zwar besser herausgearbeitet werden k{\"o}nnen, jedoch ist der Rechenaufwand durch die variable Skalierung und somit stark redundante Analyse und ihre Darstellung unverh{\"a}ltnism{\"a}ßig gr{\"o}ßer. Eine Analyse des Linienbreitenprofils erfolgt dabei {\"u}ber die Entwicklung der Skalierung eines Signals. Die {\"u}ber Heterodynsignale ermittelte effektive Linienbreite bei einer modulierten Abstimmung sollte eher als „dynamische" oder „intrinsische" Laserlinienbreite bezeichnet werden. Eine direkte Korrelation der Frequenzvariation des Lasers mit dem Stromrauschen des Injektionsstroms ist offensichtlich. Die wirksame Bandbreite des Stromrauschens wird durch die Systemelektronik einerseits und die Modulationsbandbreite des Lasers andererseits begrenzt. Außer den wichtigen Parametern wie Abstimmung und Linienbreite lassen sich {\"u}ber die dynamische Zeitfrequenzanalyse von Heterodynsignalen dar{\"u}ber hinaus weitere Ph{\"a}nomene wie R{\"u}ckkopplung, Moden{\"u}berlagerung oder Einschwingverhalten aufgrund direkter Kopplung zwischen Intensit{\"a}ts­ und Frequenzmodulation beobachten.}, subject = {Laserdiode}, language = {de} } @phdthesis{Schwertberger2005, author = {Schwertberger, Ruth}, title = {Epitaxie von InAs-Quanten-Dash-Strukturen auf InP und ihre Anwendung in Telekommunikationslasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Herstellung und Charakterisierung von niedrigdimensionalen Strukturen f{\"u}r den Einsatz als aktive Schicht in InP-Halbleiterlasern. Quantenpunktstrukturen als Lasermedium weisen gegen{\"u}ber herk{\"o}mmlichen Quantenfilmlasern einige Vorteile auf, wie beispielsweise geringe Schwellenstromdichten, breites Verst{\"a}rkungsspektrum und geringe Temperatursensitivit{\"a}t der Emissionswellenl{\"a}nge. Ziel dieser Arbeit ist es, diese speziellen Vorteile, die im GaAs-System gr{\"o}ßtenteils nachgewiesen sind, auch auf das InP-System zu {\"u}bertragen, da dieses f{\"u}r die Telekommunikationswellenl{\"a}nge 1.55 µm pr{\"a}destiniert ist. Die vorgestellten Strukturen wurden mittels einer Gasquellen-Molekularstrahlepitaxie-Anlage unter Verwendung der alternativen Gruppe-V-Precursor Terti{\"a}rbutylphosphin (TBP) und -arsin (TBA) hergestellt. Die Bildung der Quantenpunktstrukturen wurde zun{\"a}chst an Hand von Teststrukturen optimiert. Scheidet man InAs auf einem InP(100)-Substrat ab, so bilden sich - anders als auf GaAs - keine runden InAs-Quantenpunkte, sondern unregelm{\"a}ßige, strichf{\"o}rmige Strukturen mit einer klaren Vorzugsorientierung, sogenannte Dashes. Verschiedene Wachstumsparameter, wie die Menge an deponiertem InAs, der Strukturaufbau oder der Wachstumsmodus, lassen eine Beeinflussung der Emissionseigenschaften zu, die mittels Photolumineszenz (PL)-Spektroskopie untersucht wurden. So kann die Emissionswellenl{\"a}nge der Dashes sehr genau und {\"u}ber einen großen Bereich zwischen 1.2 und 2.0 µm {\"u}ber die nominelle Dicke der Dash-Schicht festgelegt werden. Dieser Zusammenhang l{\"a}sst sich auch nutzen, um durch die Kombination von Schichten unterschiedlicher Dash-Gr{\"o}ße eine extreme Verbreiterung des Verst{\"a}rkungsspektrums auf {\"u}ber 300 nm zu erzielen. Neben der Hauptanwendung als Telekommunikationslaser sind auch Einsatzm{\"o}glichkeiten in der Gassensorik f{\"u}r einen Wellenl{\"a}ngenbereich zwischen 1.8 und 2.0 µm denkbar. Dieser ist neben der Verwendung extrem dicker Schichten durch das Prinzip des migrationsunterst{\"u}tzten Wachstums (engl. migration enhanced epitaxy) oder durch die Einbettung der Dash-Schichten in einen InGaAs-Quantenfilm ("Dash-in-a-Well"-Struktur) realisierbar. Letzteres zieht eine starke Rotverschiebung um etwa 130 meV bei gleichzeitiger schmaler und intensiver Emission nach sich. Da die Dashes einige sehr interessante Eigenschaften aufweisen, wurde ihre Eignung als aktive Schicht eines InP-Halbleiterlasers untersucht. Zun{\"a}chst wurden der genaue Schichtaufbau, speziell die Fernfeldcharakteristik, und die Wachstumsparameter optimiert. Ebenso wurde der Effekt eines nachtr{\"a}glichen Ausheilschritts diskutiert. Da die speziellen Vorteile der Quanten-Dash(QD)-Strukturen nur Relevanz haben, wenn auch ihre Grunddaten einem Quantenfilmlaser (QW-Laser) auf InP ebenb{\"u}rtig sind, wurde besonderer Wert auf einen entsprechenden Vergleich gelegt. Dabei zeigt sich, dass die Effizienzen ebenso wie die Absorption der QD-Laser nahezu identisch mit QW-Lasern sind. Die Schwellenstromdichten weisen eine st{\"a}rkere Abh{\"a}ngigkeit von der L{\"a}nge des Laserresonators auf, was dazu f{\"u}hrt, dass ab einer L{\"a}nge von 1.2 mm QD-Laser geringere Werte zeigen. Die Temperaturabh{\"a}ngigkeit der Schwellenstromdichte, die sich in der charakteristischen Temperatur T0 {\"a}ussert, zeigt dagegen f{\"u}r QD-Laser eine st{\"a}rkere Sensitivit{\"a}t mit maximalen T0-Werten von knapp {\"u}ber 100 K. Betrachtet man das Emissionsspektrum der QD-Laser, so f{\"a}llt die starke Blauverschiebung mit abnehmender Bauteill{\"a}nge auf. Gleichzeitig zeigen diese Laser im Vergleich zu QW-Lasern eine deutlich gr{\"o}ßere Temperaturstabilit{\"a}t der Emissionswellenl{\"a}nge. Beide Eigenschaften haben ihre Ursache in der flachen Form des Verst{\"a}rkungsspektrums. Zus{\"a}tzlich wurden einige der an Hand der Teststrukturen gezeigten Dash-Eigenschaften auch an Laserstrukturen nachgewiesen. So l{\"a}sst sich durch Variation der Dash-Schichtdicke von 5 auf 7.5 ML eine Verschiebung der Emissionswellenl{\"a}nge um bis zu 230 nm realisieren, wobei dieses Verfahren damit noch nicht ausgereizt ist. Ebenso wurde auch ein {\"U}berlapp aus sechs jeweils verschieden dicken Dash-Schichten in eine Laserstruktur eingebaut. An Hand von Subschwellspektren wurde eine Verst{\"a}rkungsbreite von etwa 220 nm nachgewiesen, die eine Abdeckung des gesamten Telekommunikationsbandes durch eine einzige Laserstruktur erlauben w{\"u}rde. Aus Quanten-Dash-Material prozessierte Stegwellenleiter (RWG)-Laser weisen sehr vielversprechende Daten mit hohen Ausgangsleistungen bis 15 mW pro Facette und niedrigen Schwellenstr{\"o}men auf. Damit schafft diese Arbeit die Grundvoraussetzungen, um InAs-Quanten-Dashes als echte Alternative zu herk{\"o}mmlichen Quantenfilmen in InP-Halbleiterlasern zu etablieren. Besonders das breite Verst{\"a}rkungsspektrum und die hohe Temperaturstabilit{\"a}t der Emissionswellenl{\"a}nge zeichnen dieses Material aus.}, subject = {Halbleiterlaser}, language = {de} }