@phdthesis{Wittek2013, author = {Wittek, Anke}, title = {Vergleichende elektrophysiologische Untersuchungen zweier Saccharose/H +-Symporter, ZmSUT1 (Zea mays) und UmSrt1 (Ustilago maydis)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85279}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bei der Betrachtung des Pathosystems Ustilago maydis/Zea mays kommen sich Proteine unterschiedlicher Organismen sehr nahe. Die derzeitige Hypothese zur lokalen Szenerie in der ausgebildeten Interaktionszone von Pflanze und Pilz spricht zwei SUC-Transportern dabei wichtige Rollen in der Pflanze/Pilz Interaktion zu. UmSrt1, der erste beschriebene pilzliche SUC-Transporter aus dem Maispathogen Ustilago maydis (Wahl et al., 2010) und ZmSUT1, der aus Zea mays stammende low affinity SUC-Transporter (Carpaneto et al., 2005) werden als Gegenspieler im Konkurrenzkampf um die extrazellul{\"a}re SUC beschrieben (Wahl et al., 2010). ZmSUT1 ist in der Plasmamembran der Geleitzellen lokalisiert und dort f{\"u}r die Beladung des Phloems mit SUC aus dem Apoplasten zust{\"a}ndig. UmSrt1, f{\"u}r den eine Lokalisation in der Plasmamembran in Hefen gezeigt werden konnte, sorgt als „high affinity" Transporter mit dem Import extrazellul{\"a}rer SUC f{\"u}r die Kohlenhydratversorgung der pilzlichen Entwicklung und Ern{\"a}hrung (Wahl et al., 2010). Gegenstand der vorliegenden Arbeit waren vergleichende elektrophysiologische Charakterisierungen der SUC-Transporteigenschaften von ZmSUT1 und UmSrt1. Durch heterologe Expression der Proteine in Xenopus Oozyten und anschließende Messungen unter Verwendung der DEVC-Technik wurden die Eigenschaften des SUC-Transports beider SUC-Transporter im Hinblick auf ihre Konzentrations-, pH-, Spannungsabh{\"a}ngigkeit, sowie auf die Substratspezifit{\"a}t hin untersucht. Diese vergleichenden Studien zur Charakterisierung beider Transportproteine ergaben ihren physiologischen Aufgaben entsprechende Unterschiede. ZmSUT1 konnte ein Verhalten als „low affinity/high capacity" Transporter mit Affinit{\"a}ten gegen{\"u}ber SUC im millimolaren Bereich mit einer spannungsunabh{\"a}ngigen Transportaktivit{\"a}t best{\"a}tigt werden. Zudem konnte die Transportaktivit{\"a}t als stark H+-abh{\"a}ngig beschrieben werden (Carpaneto et al., 2005), deren Optimum nahe des physiologischen Bereichs des Apoplasten bestimmt werden konnte. Des Weiteren wurden Untersuchungen zur Substratspezifit{\"a}t angefertigt, die ZmSUT1 eindeutig eine Typ-II SUT Zugeh{\"o}rigkeit (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010) mit einem engen Substratspektrum belegen. F{\"u}r UmSrt1 dagegen wurde ein Transportverhalten als „high affinity/low capacity" Transporter mit h{\"o}heren Affinit{\"a}ten gegen{\"u}ber SUC im mikromolaren Bereich ermittelt (Wahl et al., 2010). Dar{\"u}ber hinaus beschreiben die Ergebnisse dieser Arbeit eine weitestgehend H+-unabh{\"a}ngige Transportaktivit{\"a}t in einem weiten pH-Wert Bereich. Im Profil der Substratspezifit{\"a}t zeigte sich neben SUC als prim{\"a}rem Substrat ein eher unspezifischer Transport weiterer Mono-, Di- und Trisaccharide. Die postulierte SUC-Spezifit{\"a}t von UmSrt1 (Wahl et al., 2010) konnte mit den vorliegenden Ergebnissen nicht best{\"a}tigt werden. Mit einem effektivem Import von SUC mittels UmSrt1 in den Pilz umgeht U. maydis die Hydrolyse von SUC im pflanzlichen Apoplasten und damit die Bildung extrazellul{\"a}rer Glukose, die ein Signal in der pflanzlichen Pathogenabwehr darstellt (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). Somit scheint es f{\"u}r Ustillago maydis m{\"o}glich zu sein, eine von der Wirtspflanze Zea mays weitestgehend „unbemerkte" Aufnahme von Kohlenhydraten {\"u}ber einen breiten pH-Wert Bereich bewerkstelligen zu k{\"o}nnen. Die vielfach h{\"o}heren Affinit{\"a}ten gegen{\"u}ber SUC und H+ verschaffen UmSrt1 im Konkurrenzkampf um die extrazellul{\"a}re SUC einen klaren Vorteil gegen{\"u}ber ZmSUT1. Diese Daten deuten darauf hin, dass U. maydis auch unter Stressbedingungen der Pflanze und damit resultierenden Schwankungen der H+-Konzentrationen in der Lage ist, den SUC-Import f{\"u}r seine eigene Ern{\"a}hrung sicher zu stellen. Das Gebiet posttranslationaler Modifikationen von SUC-Transportern ist weitestgehend unerforscht. In planta Versuche deuteten darauf hin, dass Redox-aktive Substanzen den Zuckertransport beeinflussen. Im Oozytensystem wurde deshalb die Aktivit{\"a}t von ZmSUT1 in Anwesenheit der Redox-aktiven Substanzen GSH, GSSG, H2O2 und DTT getestet. Der geringf{\"u}gige Einfluss dieser Substanzen auf SUC-induzierte Str{\"o}me von ZmSUT1 deuten jedoch darauf hin, dass SUC-Transporter nicht ein direktes Ziel von Redox-Ver{\"a}nderungen darstellen. Um die Struktur des pflanzlichen SUC-Transporters ZmSUT1 n{\"a}her zu beleuchten und die an der Bindung von SUC involvierten Aminos{\"a}uren zu identifizieren, wurde auf der Basis der bereits bekannten Struktur von LacY aus E.coli, ebenfalls einem Vertreter der MFS, ein 3D-Modell f{\"u}r ZmSUT1 erstellt. Die AS, die in LacY an der Bindung des Substrats beteiligt sind, wurden bereits identifiziert (Vadyvaloo et al., 2006). Darauf aufbauend wurden im Rahmen einer Mutagenesestudie gezielt AS im Protein ZmSUT1 ausgew{\"a}hlt, die in verwandten SUC-Transportern konserviert und in homolgen Positionen zu den in LacY bereits identifizierten AS vorliegen. In diesen ausgew{\"a}hlten Positionen wurden mittels gerichteter Mutagenese acht Mutanten generiert. Die elektrophysiologische Charakterisierung dieser ZmSUT1-Mutanten identifizierte zwei Mutanten, die in der SUC-/H+-Translokation gest{\"o}rt waren sowie zwei WT-{\"a}hnliche. Es konnten vier Mutanten mit erniedrigten Affinit{\"a}ten gegen{\"u}ber SUC identifiziert werden, von denen zwei zus{\"a}tzlich Ver{\"a}nderungen in ihrer Substratspezifit{\"a}t aufweisen. Diese vier AS werden als m{\"o}gliche Kandidaten angesehen, an der Bindung und/oder Translokation von SUC beteiligt zu sein.}, subject = {Saccharose}, language = {de} }