@phdthesis{Redlich2020, author = {Redlich, Sarah}, title = {Opportunities and obstacles of ecological intensification: Biological pest control in arable cropping systems}, doi = {10.25972/OPUS-17122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171228}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Modern agriculture is the basis of human existence, a blessing, but also a curse. It provides nourishment and well-being to the ever-growing human population, yet destroys biodiversity-mediated processes that underpin productivity: ecosystem services such as water filtration, pollination and biological pest control. Ecological intensification is a promising alternative to conventional farming, and aims to sustain yield and ecosystem health by actively managing biodiversity and essential ecosystem services. Here, I investigate opportunities and obstacles for ecological intensification. My research focuses on 1) the relative importance of soil, management and landscape variables for biodiversity and wheat yield (Chapter II); 2) the influence of multi-scale landscape-level crop diversity on biological pest control in wheat (Chapter III) and 3) on overall and functional bird diversity (Chapter IV). I conclude 4) by introducing a guide that helps scientists to increase research impact by acknowledging the role of stakeholder engagement for the successful implementation of ecological intensification (Chapter V). Ecological intensification relies on the identification of natural pathways that are able to sustain current yields. Here, we crossed an observational field study of arthropod pests and natural enemies in 28 real-life wheat systems with an orthogonal on-field insecticide-fertilizer experiment. Using path analysis, we quantified the effect of 34 factors (soil characteristics, recent and historic crop management, landscape heterogeneity) that directly or indirectly (via predator-prey interactions) contribute to winter wheat yield. Reduced soil preparation and high crop rotation diversity enhanced crop productivity independent of external agrochemical inputs. Concurrently, biological control by arthropod natural enemies could be restored by decreasing average field sizes on the landscape scale, extending crop rotations and reducing soil disturbance. Furthermore, reductions in agrochemical inputs decreased pest abundances, thereby facilitating yield quality. Landscape-level crop diversity is a promising tool for ecological intensification. However, biodiversity enhancement via diversification measures does not always translate into agricultural benefits due to antagonistic species interactions (intraguild predation). Additionally, positive effects of crop diversity on biological control may be masked by inappropriate study scales or correlations with other landscape variables (e.g. seminatural habitat). Therefore, the multiscale and context-dependent impact of crop diversity on biodiversity and ecosystem services is ambiguous. In 18 winter wheat fields along a crop diversity gradient, insect- and bird-mediated pest control was assessed using a natural enemy exclusion experiment with cereal grain aphids. Although birds did not influence the strength of insect-mediated pest control, crop diversity (rather than seminatural habitat cover) enhanced aphid regulation by up to 33\%, particularly on small spatial scales. Crop diversification, an important Greening measure in the European Common Agricultural Policy, can improve biological control, and could lower dependence on insecticides, if the functional identity of crops is taken into account. Simple measures such as 'effective number of crop types' help in science communication. Although avian pest control did not respond to landscape-level crop diversity, birds may still benefit from increased crop resources in the landscape, depending on their functional grouping (feeding guild, conservation status, habitat preference, nesting behaviour). Observational studies of bird functional diversity on 14 wheat study fields showed that non-crop landscape heterogeneity rather than crop diversity played a key role in determining the richness of all birds. Insect-feeding, non-farmland and non-threatened birds increased across multiple spatial scales (up to 3000 m). Only crop-nesting farmland birds declined in heterogeneous landscapes. Thus, crop diversification may be less suitable for conserving avian diversity, but abundant species benefit from overall habitat heterogeneity. Specialist farmland birds may require more targeted management approaches. Identifying ecological pathways that favour biodiversity and ecosystem services provides opportunities for ecological intensification that increase the likelihood of balancing conservation and productivity goals. However, change towards a more sustainable agriculture will be slow to come if research findings are not implemented on a global scale. During dissemination activities within the EU project Liberation, I gathered information on the advantages and shortcomings of ecological intensification and its implementation. Here, I introduce a guide ('TREE') aimed at scientists that want to increase the impact of their research. TREE emphasizes the need to engage with stakeholders throughout the planning and research process, and actively seek and promote science dissemination and knowledge implementation. This idea requires scientists to leave their comfort zone and consider socioeconomic, practical and legal aspects often ignored in classical research. Ecological intensification is a valuable instrument for sustainable agriculture. Here, I identified new pathways that facilitate ecological intensification. Soil quality, disturbance levels and spatial or temporal crop diversification showed strong positive correlations with natural enemies, biological pest control and yield, thereby lowering the dependence on agrochemical inputs. Differences between functional groups caused opposing, scale-specific responses to landscape variables. Opposed to our predictions, birds did not disturb insect-mediated pest control in our study system, nor did avian richness relate to landscape-level crop diversity. However, dominant functional bird groups increased with non-crop landscape heterogeneity. These findings highlight the value of combining different on-field and landscape approaches to ecological intensification. Concurrently, the success of ecological intensification can be increased by involving stakeholders throughout the research process. This increases the quality of science and reduces the chance of experiencing unscalable obstacles to implementation.}, language = {en} } @article{MallLarsenMartin2018, author = {Mall, David and Larsen, Ashley E. and Martin, Emily A.}, title = {Investigating the (mis)match between natural pest control knowledge and the intensity of pesticide use}, series = {Insects}, volume = {9}, journal = {Insects}, number = {1}, doi = {10.3390/insects9010002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158977}, pages = {2}, year = {2018}, abstract = {Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.}, language = {en} } @phdthesis{Schneider2015, author = {Schneider, Gudrun}, title = {Effects of adjacent habitats and landscape composition on biodiversity in semi-natural grasslands and biological pest control in oilseed rape fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113549}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {1) Modern European agricultural landscapes form a patchy mosaic of highly fragmented natural and semi-natural habitat remnants embedded in a matrix of intensively managed agricultural land. In those landscapes many organism frequently cross habitat borders including the crop - non-crop boundary, hereby connecting the biotic interactions of multiple habitat types. Therefore biodiversity and ecosystem functions within habitats are expected to depend on adjacent habitat types and the surrounding landscape matrix. In this thesis the biodiversity of non-crop habitats, and ecosystem services and disservices in crop habitats were studied in the human-dominated agricultural landscape in the district Lower Franconia, Bavaria, Germany. First we examined the effect of adjacent habitat type on species composition, diversity and ecosystem functions in semi-natural calcareous grasslands, a biodiversity-rich habitat of high conservation value (chapter 2 and 3). Second we studied the effect of habitat composition in the landscape on herbivory, biological pest control and yield in oilseed rape fields (chapter 4). 2) We examined the effect of adjacent habitat type on the diversity of carabid beetles in 20 calcareous grasslands using pitfall traps. Half of the grasslands were adjacent to a coniferous forest and half to a cereal crop field. We found different species compositions of carabid beetles depending on adjacent habitat type. In addition calcareous grasslands adjacent to crop fields harboured a higher species richness and activity density but a lower evenness of carabid beetles than calcareous grasslands adjacent to forests. These differences can be explained by the spillover of carabid beetles from the adjacent habitats. After crop harvest carabid beetle activity density in crop fields decreased while in parallel the activity density in the calcareous grasslands adjacent to the crop fields increased, indicating an unidirectional carabid beetle spillover. Our results underline that type and management of adjacent habitats affect community composition and diversity in calcareous grasslands. Therefore nature conservation measures, which focused on the improvement of local habitat quality so far, additionally need to consider adjacent habitat type. 3) In addition to carabid beetle communities we also surveyed predation rates of ground-dwelling predators on the same calcareous grasslands in two study periods (June and late August). As ground-dwelling predators of forests or crop fields can move into adjacent calcareous grasslands we expected different predation rates depending on adjacent habitat type. We exposed in total 32.000 lady bird eggs as prey items on the calcareous grasslands in distances of 5 and 20m from the habitat border. We found higher predation rates on calcareous grasslands adjacent to forests than on calcareous grasslands adjacent to crop fields, but only on cool days. On warm days a very high extent (often 100\%) of the exposed prey items were consumed adjacent to both habitat types, which did not allow the detection of possible differences between the adjacent habitat types. Predation rates differed not between the two study periods or the two distances to the habitat edge. The higher predation rates adjacent to forests can be explained by the spillover of ground-dwelling predators from forests into calcareous grasslands. Our results show, that spillover into semi-natural habitats affects ecosystem functioning in addition to species composition and diversity. 4) In chapter 4 of this thesis we examined the effect of spatiotemporal changes in crop cover on pest - natural enemy interactions and crop yields. During two study years we surveyed the abundance of adult and larval pollen beetles, parasitism of pollen beetle larvae by a hymenopteran parasitoid and oilseed rape yields of 36 oilseed rape fields. The surrounding landscape of the fields (1 km radius) differed in the oilseed rape proportion and in the inter-annual change in the oilseed rape proportion since the previous year. We found a dilution effect, i.e. a decreasing abundance with increasing oilseed rape proportions, for pollen beetle larvae and parasitoids in both study years and for adult pollen beetles in one study year. Oilseed rape yields increased with increasing oilseed rape proportions. Inter-annual changes in oilseed rape proportions led to inter-annual crowding and dilution effects for pollen beetles, but had no effect on parasitism or yield. Our results indicate the potential to reduce pest loads and increase yields in intensively managed oilseed rape fields by a coordinated management of the spatiotemporal oilseed rape cover in the landscape. 5) In summary, we showed in this thesis that the biodiversity and functioning of crop and non-crop habitats within agricultural landscapes is affected by the spillover of organisms and thus by the habitat composition in the close surrounding and in the broader landscape context. Spillover affects also ecosystem services and disservices and therefore crop productivity. Thereby the spatial and temporal variation of specific crop types in the landscape can be of particular importance for crop yields. Thus a coordinated landscape wide management can help to optimize both biodiversity conservation and the delivery of ecosystem services and thus crop yields. Future studies integrating landscape effects across several ecosystem functions, multiple taxonomic groups and different crop types are necessary to develop definite landscape management schemes.}, subject = {Landschafts{\"o}kologie}, language = {en} }